IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2335-d1148742.html
   My bibliography  Save this article

Multimodal Interaction and Fused Graph Convolution Network for Sentiment Classification of Online Reviews

Author

Listed:
  • Dehong Zeng

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

  • Xiaosong Chen

    (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China)

  • Zhengxin Song

    (School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China)

  • Yun Xue

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

  • Qianhua Cai

    (School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China)

Abstract

An increasing number of people tend to convey their opinions in different modalities. For the purpose of opinion mining, sentiment classification based on multimodal data becomes a major focus. In this work, we propose a novel Multimodal Interactive and Fusion Graph Convolutional Network to deal with both texts and images on the task of document-level multimodal sentiment analysis. The image caption is introduced as an auxiliary, which is aligned with the image to enhance the semantics delivery. Then, a graph is constructed with the sentences and images generated as nodes. In line with the graph learning, the long-distance dependencies can be captured while the visual noise can be filtered. Specifically, a cross-modal graph convolutional network is built for multimodal information fusion. Extensive experiments are conducted on a multimodal dataset from Yelp. Experimental results reveal that our model obtains a satisfying working performance in DLMSA tasks.

Suggested Citation

  • Dehong Zeng & Xiaosong Chen & Zhengxin Song & Yun Xue & Qianhua Cai, 2023. "Multimodal Interaction and Fused Graph Convolution Network for Sentiment Classification of Online Reviews," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2335-:d:1148742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haoliang Xiong & Zehao Yan & Hongya Zhao & Zhenhua Huang & Yun Xue, 2022. "Triplet Contrastive Learning for Aspect Level Sentiment Classification," Mathematics, MDPI, vol. 10(21), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Ma & Baoyu Fan & Benjamin K. Ng & Chan-Tong Lam, 2024. "VL-Meta: Vision-Language Models for Multimodal Meta-Learning," Mathematics, MDPI, vol. 12(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Hyun Yoon & Jong Won Jung & Seok Bong Yoo, 2024. "Auxcoformer: Auxiliary and Contrastive Transformer for Robust Crack Detection in Adverse Weather Conditions," Mathematics, MDPI, vol. 12(5), pages 1-20, February.
    2. Ze Shi & Hongyi Li & Di Zhao & Chengwei Pan, 2023. "Research on Relation Classification Tasks Based on Cybersecurity Text," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    3. Weihua Ou & Jianping Gou & Shaoning Zeng & Lan Du, 2023. "Preface to the Special Issue “Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics”—Special Issue Book," Mathematics, MDPI, vol. 11(4), pages 1-4, February.
    4. Jiehai Chen & Zhixun Qiu & Junxi Liu & Yun Xue & Qianhua Cai, 2023. "Syntactic Structure-Enhanced Dual Graph Convolutional Network for Aspect-Level Sentiment Classification," Mathematics, MDPI, vol. 11(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2335-:d:1148742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.