IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3844-d1235244.html
   My bibliography  Save this article

An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems

Author

Listed:
  • Fan Cao

    (College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Zhili Tang

    (College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Caicheng Zhu

    (College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Xin Zhao

    (Beijing Aerospace Technology Institute, Beijing 100074, China)

Abstract

Aerodynamic shape optimization is frequently complicated and challenging due to the involvement of multiple objectives, large-scale decision variables, and expensive cost function evaluation. This paper presents a bilayer parallel hybrid algorithm framework coupling multi-objective local search and global evolution mechanism to improve the optimization efficiency and convergence accuracy in high-dimensional design space. Specifically, an efficient multi-objective hybrid algorithm (MOHA) and a gradient-based surrogate-assisted multi-objective hybrid algorithm (GS-MOHA) are developed under this framework. In MOHA, a novel multi-objective gradient operator is proposed to accelerate the exploration of the Pareto front, and it introduces new individuals to enhance the diversity of the population. Afterward, MOHA achieves a trade-off between exploitation and exploration by selecting elite individuals in the local search space during the evolutionary process. Furthermore, a surrogate-assisted hybrid algorithm based on the gradient-enhanced Kriging with the partial least squares(GEKPLS) approach is established to improve the engineering applicability of MOHA. The optimization results of benchmark functions demonstrate that MOHA is less constrained by dimensionality and can solve multi-objective optimization problems (MOPs) with up to 1000 decision variables. Compared to existing MOEAs, MOHA demonstrates notable enhancements in optimization efficiency and convergence accuracy, specifically achieving a remarkable 5–10 times increase in efficiency. In addition, the optimization efficiency of GS-MOHA is approximately five times that of MOEA/D-EGO and twice that of K-RVEA in the 30-dimensional test functions. Finally, the multi-objective optimization results of the airfoil shape design validate the effectiveness of the proposed algorithms and their potential for engineering applications.

Suggested Citation

  • Fan Cao & Zhili Tang & Caicheng Zhu & Xin Zhao, 2023. "An Efficient Hybrid Multi-Objective Optimization Method Coupling Global Evolutionary and Local Gradient Searches for Solving Aerodynamic Optimization Problems," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3844-:d:1235244
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaoyi Wu & Yong Li & Gonglin Yuan, 2018. "A Three-Term Conjugate Gradient Algorithm with Quadratic Convergence for Unconstrained Optimization Problems," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-15, June.
    2. Farzad Kiani & Sajjad Nematzadeh & Fateme Aysin Anka & Mine Afacan Findikli, 2023. "Chaotic Sand Cat Swarm Optimization," Mathematics, MDPI, vol. 11(10), pages 1-47, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judson Estes & Vijitashwa Pandey, 2023. "Investigating the Effect of Organization Structure and Cognitive Profiles on Engineering Team Performance Using Agent-Based Models and Graph Theory," Mathematics, MDPI, vol. 11(21), pages 1-13, November.
    2. Hang Xu & Chaohui Huang & Hui Wen & Tao Yan & Yuanmo Lin & Ying Xie, 2024. "A Hybrid Initialization and Effective Reproduction-Based Evolutionary Algorithm for Tackling Bi-Objective Large-Scale Feature Selection in Classification," Mathematics, MDPI, vol. 12(4), pages 1-24, February.
    3. Hang Xu & Chaohui Huang & Jianbing Lin & Min Lin & Huahui Zhang & Rongbin Xu, 2024. "A Multi-Task Decomposition-Based Evolutionary Algorithm for Tackling High-Dimensional Bi-Objective Feature Selection," Mathematics, MDPI, vol. 12(8), pages 1-23, April.
    4. Hang Xu, 2024. "An Interpolation-Based Evolutionary Algorithm for Bi-Objective Feature Selection in Classification," Mathematics, MDPI, vol. 12(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Qiao & Nansi He & You Cui & Jichang Zhu & Kun Xiao, 2024. "Reservoir Porosity Prediction Based on BiLSTM-AM Optimized by Improved Pelican Optimization Algorithm," Energies, MDPI, vol. 17(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3844-:d:1235244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.