IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3736-d1229391.html
   My bibliography  Save this article

Quantile Estimation Using the Log-Skew-Normal Linear Regression Model with Application to Children’s Weight Data

Author

Listed:
  • Raúl Alejandro Morán-Vásquez

    (Instituto de Matemáticas, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
    These authors contributed equally to this work.)

  • Anlly Daniela Giraldo-Melo

    (Instituto de Matemáticas, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia
    These authors contributed equally to this work.)

  • Mauricio A. Mazo-Lopera

    (Escuela de Estadística, Universidad Nacional de Colombia, Carrera 65 No. 59A-110, Medellín 050034, Colombia
    These authors contributed equally to this work.)

Abstract

In this article, we establish properties that relate quantiles of the log-skew-normal distribution to its parameters, allowing us to investigate the relationship between quantiles of a positive skewed response variable and a set of explanatory variables via the log-skew-normal linear regression model. We compute the maximum likelihood estimates of the parameters through a correspondence between the log-skew-normal and skew-normal linear regression models. Monte Carlo simulations show the satisfactory performance of the quantile estimators. An application to children’s data is presented and discussed.

Suggested Citation

  • Raúl Alejandro Morán-Vásquez & Anlly Daniela Giraldo-Melo & Mauricio A. Mazo-Lopera, 2023. "Quantile Estimation Using the Log-Skew-Normal Linear Regression Model with Application to Children’s Weight Data," Mathematics, MDPI, vol. 11(17), pages 1-10, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3736-:d:1229391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adelchi Azzalini & Thomas Del Cappello & Samuel Kotz, 2002. "Log-Skew-Normal and Log-Skew-t Distributions as Models for Family Income Data," Journal of Income Distribution, Ad libros publications inc., vol. 11(3-4), pages 2-2, September.
    2. Jimmy Reyes & Yuri A. Iriarte, 2023. "A New Family of Modified Slash Distributions with Applications," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    3. Luis Vanegas & Gilberto Paula, 2015. "A semiparametric approach for joint modeling of median and skewness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 110-135, March.
    4. A. Capitanio & A. Azzalini & E. Stanghellini, 2003. "Graphical models for skew‐normal variates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 129-144, March.
    5. Liseo, Brunero & Loperfido, Nicola, 2003. "A Bayesian interpretation of the multivariate skew-normal distribution," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 395-401, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinaldo B. Arellano-Valle & Adelchi Azzalini, 2022. "Some properties of the unified skew-normal distribution," Statistical Papers, Springer, vol. 63(2), pages 461-487, April.
    2. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    4. Young, Phil D. & Kahle, David J. & Young, Dean M., 2017. "On the independence of singular multivariate skew-normal sub-vectors," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 58-62.
    5. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    6. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    7. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    8. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    9. Danúbia R. Cunha & Jose Angelo Divino & Helton Saulo, 2024. "Zero-Adjusted Log-Symmetric Quantile Regression Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2087-2111, May.
    10. Zareifard, Hamid & Rue, Håvard & Khaledi, Majid Jafari & Lindgren, Finn, 2016. "A skew Gaussian decomposable graphical model," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 58-72.
    11. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    12. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    13. Taras Bodnar & Stepan Mazur & Nestor Parolya, 2019. "Central limit theorems for functionals of large sample covariance matrix and mean vector in matrix‐variate location mixture of normal distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 46(2), pages 636-660, June.
    14. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    15. Jorge M. Arevalillo & Hilario Navarro, 2019. "A stochastic ordering based on the canonical transformation of skew-normal vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 475-498, June.
    16. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    17. Sheng, Tianhong & Li, Bing & Solea, Eftychia, 2023. "On skewed Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    18. Silvia L. P. Ferrari & Giovana Fumes, 2017. "Box–Cox symmetric distributions and applications to nutritional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(3), pages 321-344, July.
    19. Helton Saulo & Jeremias Leão, 2017. "On log-symmetric duration models applied to high frequency financial data," Economics Bulletin, AccessEcon, vol. 37(2), pages 1089-1097.
    20. Jorge M. Arevalillo & Hilario Navarro, 2020. "Data projections by skewness maximization under scale mixtures of skew-normal vectors," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 435-461, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3736-:d:1229391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.