IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3637-d1223086.html
   My bibliography  Save this article

Unsupervised Learning of Particles Dispersion

Author

Listed:
  • Nicholas Christakis

    (Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia CY-2417, Cyprus
    Laboratory of Applied Mathematics, University of Crete, GR-70013 Heraklion, Greece)

  • Dimitris Drikakis

    (Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia CY-2417, Cyprus)

Abstract

This paper discusses using unsupervised learning in classifying particle-like dispersion. The problem is relevant to various applications, including virus transmission and atmospheric pollution. The Reduce Uncertainty and Increase Confidence (RUN-ICON) algorithm of unsupervised learning is applied to particle spread classification. The algorithm classifies the particles with higher confidence and lower uncertainty than other algorithms. The algorithm’s efficiency remains high also when noise is added to the system. Applying unsupervised learning in conjunction with the RUN-ICON algorithm provides a tool for studying particles’ dynamics and their impact on air quality, health, and climate.

Suggested Citation

  • Nicholas Christakis & Dimitris Drikakis, 2023. "Unsupervised Learning of Particles Dispersion," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3637-:d:1223086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linwei Hu & Jie Chen & Joel Vaughan & Soroush Aramideh & Hanyu Yang & Kelly Wang & Agus Sudjianto & Vijayan N. Nair, 2021. "Supervised Machine Learning Techniques: An Overview with Applications to Banking," International Statistical Review, International Statistical Institute, vol. 89(3), pages 573-604, December.
    2. Nicholas Christakis & Dimitris Drikakis, 2023. "Reducing Uncertainty and Increasing Confidence in Unsupervised Learning," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Christakis & Dimitris Drikakis, 2023. "Reducing Uncertainty and Increasing Confidence in Unsupervised Learning," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    2. Minwoo Song & Jaewook Jeong & Louis Kumi & Hyeongjun Mun, 2024. "Analysis of the Effect of Outdoor Thermal Comfort on Construction Accidents by Subcontractor Types," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
    3. Nengfeng Zhou & Zach Zhang & Vijayan N. Nair & Harsh Singhal & Jie Chen, 2022. "Bias, Fairness and Accountability with Artificial Intelligence and Machine Learning Algorithms," International Statistical Review, International Statistical Institute, vol. 90(3), pages 468-480, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3637-:d:1223086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.