IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3063-d1191507.html
   My bibliography  Save this article

Reducing Uncertainty and Increasing Confidence in Unsupervised Learning

Author

Listed:
  • Nicholas Christakis

    (Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia CY-2417, Cyprus
    Laboratory of Applied Mathematics, University of Crete, GR-70013 Heraklion, Greece)

  • Dimitris Drikakis

    (Institute for Advanced Modelling and Simulation, University of Nicosia, Nicosia CY-2417, Cyprus)

Abstract

This paper presents the development of a novel algorithm for unsupervised learning called RUN-ICON (Reduce UNcertainty and Increase CONfidence). The primary objective of the algorithm is to enhance the reliability and confidence of unsupervised clustering. RUN-ICON leverages the K-means++ method to identify the most frequently occurring dominant centres through multiple repetitions. It distinguishes itself from existing K-means variants by introducing novel metrics, such as the Clustering Dominance Index and Uncertainty, instead of relying solely on the Sum of Squared Errors, for identifying the most dominant clusters. The algorithm exhibits notable characteristics such as robustness, high-quality clustering, automation, and flexibility. Extensive testing on diverse data sets with varying characteristics demonstrates its capability to determine the optimal number of clusters under different scenarios. The algorithm will soon be deployed in real-world scenarios, where it will undergo rigorous testing against data sets based on measurements and simulations, further proving its effectiveness.

Suggested Citation

  • Nicholas Christakis & Dimitris Drikakis, 2023. "Reducing Uncertainty and Increasing Confidence in Unsupervised Learning," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3063-:d:1191507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linwei Hu & Jie Chen & Joel Vaughan & Soroush Aramideh & Hanyu Yang & Kelly Wang & Agus Sudjianto & Vijayan N. Nair, 2021. "Supervised Machine Learning Techniques: An Overview with Applications to Banking," International Statistical Review, International Statistical Institute, vol. 89(3), pages 573-604, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Christakis & Dimitris Drikakis, 2023. "Unsupervised Learning of Particles Dispersion," Mathematics, MDPI, vol. 11(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Christakis & Dimitris Drikakis, 2023. "Unsupervised Learning of Particles Dispersion," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
    2. Minwoo Song & Jaewook Jeong & Louis Kumi & Hyeongjun Mun, 2024. "Analysis of the Effect of Outdoor Thermal Comfort on Construction Accidents by Subcontractor Types," Sustainability, MDPI, vol. 16(12), pages 1-23, June.
    3. Nengfeng Zhou & Zach Zhang & Vijayan N. Nair & Harsh Singhal & Jie Chen, 2022. "Bias, Fairness and Accountability with Artificial Intelligence and Machine Learning Algorithms," International Statistical Review, International Statistical Institute, vol. 90(3), pages 468-480, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3063-:d:1191507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.