IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3561-d1219416.html
   My bibliography  Save this article

An Improved Interval-Valued Hesitant Fuzzy Weighted Geometric Operator for Multi-Criterion Decision-Making

Author

Listed:
  • Yanru Zhong

    (Guangxi Key Laboratory of Intelligent Processing of Computer Images and Graphic, Guilin University of Electronic Technology, Guilin 541004, China)

  • Zhengshuai Lu

    (Guangxi Key Laboratory of Intelligent Processing of Computer Images and Graphic, Guilin University of Electronic Technology, Guilin 541004, China)

  • Yiyuan Li

    (Guangxi Key Laboratory of Intelligent Processing of Computer Images and Graphic, Guilin University of Electronic Technology, Guilin 541004, China)

  • Yuchu Qin

    (School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China)

  • Meifa Huang

    (School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China)

Abstract

In this paper, an improved interval-valued hesitant fuzzy weighted geometric (IIVHFWG) operator for multi-criterion decision-making is proposed. This operator is free of the limitations of the existing interval-valued hesitant fuzzy weighted average operator, interval-valued hesitant fuzzy weighted geometric operator, generalized interval-valued hesitant fuzzy weighted geometric operator, interval-valued hesitant fuzzy Hammer weighted average operator, and interval-valued hesitant fuzzy Hammer weighted geometric operator, which are prone to being influenced by extreme values. Based on the proposed IIVHFWG operator, a new method to solve the multi-criterion decisionmaking problems with interval-valued hesitant fuzzy elements is presented. Several numerical examples together with comparisons are introduced to demonstrate the effectiveness and advantages of this method.

Suggested Citation

  • Yanru Zhong & Zhengshuai Lu & Yiyuan Li & Yuchu Qin & Meifa Huang, 2023. "An Improved Interval-Valued Hesitant Fuzzy Weighted Geometric Operator for Multi-Criterion Decision-Making," Mathematics, MDPI, vol. 11(16), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3561-:d:1219416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang-Guo Li & Ding-Hong Peng, 2014. "Interval-Valued Hesitant Fuzzy Hamacher Synergetic Weighted Aggregation Operators and Their Application to Shale Gas Areas Selection," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-25, April.
    2. Liu, Hua-Wen & Wang, Guo-Jun, 2007. "Multi-criteria decision-making methods based on intuitionistic fuzzy sets," European Journal of Operational Research, Elsevier, vol. 179(1), pages 220-233, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    2. Ouyang, Yao & Pedrycz, Witold, 2016. "A new model for intuitionistic fuzzy multi-attributes decision making," European Journal of Operational Research, Elsevier, vol. 249(2), pages 677-682.
    3. Zhi Pei, 2017. "Multi-attribute decision making based on a novel IF point operator," Fuzzy Optimization and Decision Making, Springer, vol. 16(4), pages 505-524, December.
    4. Hossein Sayyadi Tooranloo & Arezoo Sadat Ayatollah, 2024. "Neutrosophic VIKOR approach for multi-attribute group decision-making," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(2), pages 121-134.
    5. Mahsa Montajabiha, 2016. "An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning," Group Decision and Negotiation, Springer, vol. 25(2), pages 221-244, March.
    6. Zhili Jia & Liyi Liu & Zhaofeng Diao, 2024. "A Group Intuitionistic Fuzzy Exponential TODIM Method Considering Attribute Interactions Applied to Green Building Material Supplier Selection," Sustainability, MDPI, vol. 16(18), pages 1-24, September.
    7. Jian Lin & Fanyong Meng & Riqing Chen & Qiang Zhang, 2018. "Preference Attitude-Based Method for Ranking Intuitionistic Fuzzy Numbers and Its Application in Renewable Energy Selection," Complexity, Hindawi, vol. 2018, pages 1-14, February.
    8. Jiekun Song & Zeguo He & Lina Jiang & Zhicheng Liu & Xueli Leng, 2022. "Research on Hybrid Multi-Attribute Three-Way Group Decision Making Based on Improved VIKOR Model," Mathematics, MDPI, vol. 10(15), pages 1-21, August.
    9. Ocampo, Lanndon & Aro, Joerabell Lourdes & Evangelista, Samantha Shane & Maturan, Fatima & Atibing, Nadine May & Yamagishi, Kafferine & Selerio, Egberto, 2023. "Synthesis of strategies in post-COVID-19 public sector supply chains under an intuitionistic fuzzy environment," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    10. Che Mohd Imran Che Taib & Binyamin Yusoff & Mohd Lazim Abdullah & Abdul Fatah Wahab, 2016. "Conflicting Bifuzzy Multi-attribute Group Decision Making Model with Application to Flood Control Project," Group Decision and Negotiation, Springer, vol. 25(1), pages 157-180, January.
    11. Mohamed Hanine & Omar Boutkhoum & Fatima El Barakaz & Mohamed Lachgar & Noureddine Assad & Furqan Rustam & Imran Ashraf, 2021. "An Intuitionistic Fuzzy Approach for Smart City Development Evaluation for Developing Countries: Moroccan Context," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    12. Runtong Zhang & Yuping Xing & Jun Wang & Xiaopu Shang & Xiaomin Zhu, 2018. "A Novel Multiattribute Decision-Making Method Based on Point–Choquet Aggregation Operators and Its Application in Supporting the Hierarchical Medical Treatment System in China," IJERPH, MDPI, vol. 15(8), pages 1-29, August.
    13. Jian Wu, 2016. "Consistency in MCGDM Problems with Intuitionistic Fuzzy Preference Relations Based on an Exponential Score Function," Group Decision and Negotiation, Springer, vol. 25(2), pages 399-420, March.
    14. Chun-Ho Chen, 2019. "A New Multi-Criteria Assessment Model Combining GRA Techniques with Intuitionistic Fuzzy Entropy-Based TOPSIS Method for Sustainable Building Materials Supplier Selection," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    15. Wenjun Chang & Chao Fu & Nanping Feng & Shanlin Yang, 2021. "Multi-criteria Group Decision Making with Various Ordinal Assessments," Group Decision and Negotiation, Springer, vol. 30(6), pages 1285-1314, December.
    16. Hui-Ping Lu & Hsin-Hung Lin, 2020. "Exploring the Impact of Intuitive Thinking on Creativity with Gray Relational Analysis," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    17. Bahar Türk & Aysel Erciş, 2015. "Customer love: Research on the ranking of food and beverage locations," Management & Marketing, Sciendo, vol. 10(2), pages 103-117, September.
    18. Nitin Sachdeva & Ompal Singh & P. K. Kapur & Diego Galar, 2016. "Multi-criteria intuitionistic fuzzy group decision analysis with TOPSIS method for selecting appropriate cloud solution to manage big data projects," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(3), pages 316-324, September.
    19. Xiaolu Zhang & Zeshui Xu & Manfeng Liu, 2016. "Hesitant Trapezoidal Fuzzy QUALIFLEX Method and Its Application in the Evaluation of Green Supply Chain Initiatives," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    20. Ye, Jun, 2010. "Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 202-204, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3561-:d:1219416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.