IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3143-d1195538.html
   My bibliography  Save this article

Anomaly Detection of Underground Transmission-Line through Multiscale Mask DCNN and Image Strengthening

Author

Listed:
  • Min-Gwan Kim

    (Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea)

  • Siheon Jeong

    (Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea)

  • Seok-Tae Kim

    (KEPCO Research Institute, Korea Electric Power Corporation, 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea)

  • Ki-Yong Oh

    (Department of Mechanical Convergence Engineering, Hanyang University, 222 Wangsimni-ro, Seondong-gu, Seoul 04763, Republic of Korea)

Abstract

This study proposes an integrated framework to automatically detect anomalies and faults in underground transmission-line connectors (UTLCs) with thermal images because anomaly detection of underground transmission-line connectors (UTLCs) plays a critical role in power line risk management. The proposed framework features three key characteristics. First, the measured thermal images were preprocessed through z-score normalization and image strengthening. Z-score normalization improves the robustness of feature extraction for UTLCs even though noise exists in a thermal image, and image strengthening improves the accuracy of segmentation for UTLCs. Second, a preprocessed thermal image is segmented to detect UTLCs by addressing a multiscale mask deep convolutional neural network (MS mask DCNN). The MS mask DCNN effectively detects UTLCs, enabling anomaly detection only for pixels of UTLCs. Specifically, the multiscale feature extraction module enables the extraction of distinct features of UTLCs and environments, and the skip-layer fusion module concatenates distinct features from the feature extraction module. Furthermore, a half tensor is used to reduce computational resources but maintain the same segmentation accuracy, enhancing the feasibility of the proposed framework in field applications. Third, anomaly detection is performed by addressing the contour method and unsupervised clustering method of DBSCAN. The contour method compensates for the limits of the MS mask DCNN for real-world applications because the neural networks cannot secure perfect accuracy of 100% owing to a lack of sufficient training images and low computational resources. DBSCAN improves the accuracy of diagnosis and ensures robustness to eliminate noise from thermal reflection caused by low-emissivity objects. Field experiments with high-voltage UTLCs demonstrated the effectiveness of the proposed framework. Ablation studies also confirmed that the methods addressed in this study outperform other methods. The proposed framework with a novel automatic non-destructive patrol inspection system would decrease the risks of human casualties during the periodic operation and maintenance of UTLCs, which are currently the most critical concerns.

Suggested Citation

  • Min-Gwan Kim & Siheon Jeong & Seok-Tae Kim & Ki-Yong Oh, 2023. "Anomaly Detection of Underground Transmission-Line through Multiscale Mask DCNN and Image Strengthening," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3143-:d:1195538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3143/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3143/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moath Alsafasfeh & Ikhlas Abdel-Qader & Bradley Bazuin & Qais Alsafasfeh & Wencong Su, 2018. "Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine Vision," Energies, MDPI, vol. 11(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    2. Nóra Hegedűsné Baranyai & Henrik Zsiborács & András Vincze & Nóra Rodek & Martina Makai & Gábor Pintér, 2021. "Correlation Analysis of the Spread of Household-Sized Photovoltaic Power Plants and Various District Indicators: A Case Study," Sustainability, MDPI, vol. 13(2), pages 1-24, January.
    3. Martin Libra & Milan Daneček & Jan Lešetický & Vladislav Poulek & Jan Sedláček & Václav Beránek, 2019. "Monitoring of Defects of a Photovoltaic Power Plant Using a Drone," Energies, MDPI, vol. 12(5), pages 1-9, February.
    4. Giovanni Cipriani & Antonino D’Amico & Stefania Guarino & Donatella Manno & Marzia Traverso & Vincenzo Di Dio, 2020. "Convolutional Neural Network for Dust and Hotspot Classification in PV Modules," Energies, MDPI, vol. 13(23), pages 1-17, December.
    5. Qais Alsafasfeh & Omar A. Saraereh & Imran Khan & Sunghwan Kim, 2019. "Solar PV Grid Power Flow Analysis," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    6. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    7. Mohammad Fatin Fatihur Rahman & Shurui Fan & Yan Zhang & Lei Chen, 2021. "A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture," Agriculture, MDPI, vol. 11(1), pages 1-26, January.
    8. Gábor Pintér & Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & Zoltán Birkner, 2020. "The Economic and Geographical Aspects of the Status of Small-Scale Photovoltaic Systems in Hungary—A Case Study," Energies, MDPI, vol. 13(13), pages 1-22, July.
    9. Cavieres, Robinson & Barraza, Rodrigo & Estay, Danilo & Bilbao, José & Valdivia-Lefort, Patricio, 2022. "Automatic soiling and partial shading assessment on PV modules through RGB images analysis," Applied Energy, Elsevier, vol. 306(PA).
    10. Georgios Goudelis & Pavlos I. Lazaridis & Mahmoud Dhimish, 2022. "A Review of Models for Photovoltaic Crack and Hotspot Prediction," Energies, MDPI, vol. 15(12), pages 1-24, June.
    11. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    12. Gábor Pintér, 2020. "The Potential Role of Power-to-Gas Technology Connected to Photovoltaic Power Plants in the Visegrad Countries—A Case Study," Energies, MDPI, vol. 13(23), pages 1-14, December.
    13. Sharmarke Hassan & Mahmoud Dhimish, 2022. "Review of Current State-of-the-Art Research on Photovoltaic Soiling, Anti-Reflective Coating, and Solar Roads Deployment Supported by a Pilot Experiment on a PV Road," Energies, MDPI, vol. 15(24), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3143-:d:1195538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.