IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2974-d1186156.html
   My bibliography  Save this article

Multi-View Learning-Based Fast Edge Embedding for Heterogeneous Graphs

Author

Listed:
  • Canwei Liu

    (School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
    Hunan Key Laboratory for Service Computing and Novel Software Technology, Xiangtan 411201, China)

  • Xingye Deng

    (School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Tingqin He

    (School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Lei Chen

    (School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Guangyang Deng

    (School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Yuanyu Hu

    (School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract

Edge embedding is a technique for constructing low-dimensional feature vectors of edges in heterogeneous graphs, which are also called heterogeneous information networks (HINs). However, edge embedding research is still in its early stages, and few well-developed models exist. Moreover, existing models often learn features on the edge graph, which is much larger than the original network, resulting in slower speed and inaccurate performance. To address these issues, a multi-view learning-based fast edge embedding model is developed for HINs in this paper, called MVFEE. Based on the “divide and conquer” strategy, our model divides the global feature learning into multiple separate local intra-view features learning and inter-view features learning processes. More specifically, each vertex type in the edge graph (each edge type in HIN) is first treated as a view, and a private skip-gram model is used to rapidly learn the intra-view features. Then, a cross-view learning strategy is designed to further learn the inter-view features between two views. Finally, a multi-head attention mechanism is used to aggregate these local features to generate accurate global features of each edge. Extensive experiments on four datasets and three network analysis tasks show the advantages of our model.

Suggested Citation

  • Canwei Liu & Xingye Deng & Tingqin He & Lei Chen & Guangyang Deng & Yuanyu Hu, 2023. "Multi-View Learning-Based Fast Edge Embedding for Heterogeneous Graphs," Mathematics, MDPI, vol. 11(13), pages 1-23, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2974-:d:1186156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Biao & Wang, Yanpeng & Zeng, Lina & Hu, Yanmei & Li, Hongjun, 2020. "Edge classification based on Convolutional Neural Networks for community detection in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    2. Kim, Paul & Kim, Sangwook, 2015. "Detecting overlapping and hierarchical communities in complex network using interaction-based edge clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 46-56.
    3. Chengdong Zhang & Keke Li & Shaoqing Wang & Bin Zhou & Lei Wang & Fuzhen Sun, 2023. "Learning Heterogeneous Graph Embedding with Metapath-Based Aggregation for Link Prediction," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Xu & Yuan Ran & Junqian Xing & Li Tao, 2023. "An Influence-Based Label Propagation Algorithm for Overlapping Community Detection," Mathematics, MDPI, vol. 11(9), pages 1-17, May.
    2. Zhou, Kuang & Martin, Arnaud & Pan, Quan, 2015. "A similarity-based community detection method with multiple prototype representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 519-531.
    3. Kim, Paul & Kim, Sangwook, 2017. "Detecting community structure in complex networks using an interaction optimization process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 525-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2974-:d:1186156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.