IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2840-d1178446.html
   My bibliography  Save this article

A Meta-Classification Model for Optimized ZBot Malware Prediction Using Learning Algorithms

Author

Listed:
  • Shanmugam Jagan

    (Department of CSE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India)

  • Ashish Ashish

    (Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India)

  • Miroslav Mahdal

    (Department of Control Systems and Instrumentation, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic)

  • Kenneth Ruth Isabels

    (Department of Mathematics, Saveetha Engineering College (Autonomous), Chennai 600062, India)

  • Jyoti Dhanke

    (Department of Engineering Science (Mathematics), Bharati Vidyapeeth’s College of Engineering, Pune 412115, India)

  • Parita Jain

    (Department of CSE, KIET Group of Institutions, Ghaziabad 201206, India)

  • Muniyandy Elangovan

    (Department of R&D, Bond Marine Consultancy, London EC1V2NX, UK)

Abstract

Botnets pose a real threat to cybersecurity by facilitating criminal activities like malware distribution, attacks involving distributed denial of service, fraud, click fraud, phishing, and theft identification. The methods currently used for botnet detection are only appropriate for specific botnet commands and control protocols; they do not endorse botnet identification in early phases. Security guards have used honeypots successfully in several computer security defence systems. Honeypots are frequently utilised in botnet defence because they can draw botnet compromises, reveal spies in botnet membership, and deter attacker behaviour. Attackers who build and maintain botnets must devise ways to avoid honeypot traps. Machine learning methods support identification and inhibit bot threats to address the problems associated with botnet attacks. To choose the best features to feed as input to the machine learning classifiers to estimate the performance of botnet detection, a Kernel-based Ensemble Meta Classifier (KEMC) Strategy is suggested in this work. And particle swarm optimization (PSO) and genetic algorithm (GA) intelligent optimization algorithms are used to establish the ideal order. The model covered in this paper is employed to forecast Internet cyber security circumstances. The Binary Cross-Entropy (loss), the GA-PSO optimizer, the Softsign activation functions and ensembles were used in the experiment to produce the best results. The model succeeded because Forfileless malware, gathered from well-known datasets, achieved a total accuracy of 93.3% with a True Positive (TP) Range of 87.45% at zero False Positive (FP).

Suggested Citation

  • Shanmugam Jagan & Ashish Ashish & Miroslav Mahdal & Kenneth Ruth Isabels & Jyoti Dhanke & Parita Jain & Muniyandy Elangovan, 2023. "A Meta-Classification Model for Optimized ZBot Malware Prediction Using Learning Algorithms," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2840-:d:1178446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuan Liu & Tianyi Shi & Guohui Zhou & Mingzhe Liu & Zhengtong Yin & Lirong Yin & Wenfeng Zheng, 2023. "Emotion classification for short texts: an improved multi-label method," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    2. Mahdiyeh Eslami & Mehdi Neshat & Saifulnizam Abd. Khalid, 2022. "A Novel Hybrid Sine Cosine Algorithm and Pattern Search for Optimal Coordination of Power System Damping Controllers," Sustainability, MDPI, vol. 14(1), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Ghani Olabi & Hegazy Rezk & Mohammad Ali Abdelkareem & Tabbi Awotwe & Hussein M. Maghrabie & Fatahallah Freig Selim & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Alaa A. Zaky, 2023. "Optimal Parameter Identification of Perovskite Solar Cells Using Modified Bald Eagle Search Optimization Algorithm," Energies, MDPI, vol. 16(1), pages 1-14, January.
    2. Shoyab Ali & Annapurna Bhargava & Akash Saxena & Pavan Kumar, 2023. "A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    3. Zahra Amiri & Arash Heidari & Mehdi Darbandi & Yalda Yazdani & Nima Jafari Navimipour & Mansour Esmaeilpour & Farshid Sheykhi & Mehmet Unal, 2023. "The Personal Health Applications of Machine Learning Techniques in the Internet of Behaviors," Sustainability, MDPI, vol. 15(16), pages 1-41, August.
    4. Ashish Dandotia & Mukesh Kumar Gupta & Malay Kumar Banerjee & Suraj Kumar Singh & Bojan Đurin & Dragana Dogančić & Nikola Kranjčić, 2023. "Optimal Placement and Size of SVC with Cost-Effective Function Using Genetic Algorithm for Voltage Profile Improvement in Renewable Integrated Power Systems," Energies, MDPI, vol. 16(6), pages 1-20, March.
    5. Mohammad H. Nadimi-Shahraki & Ali Fatahi & Hoda Zamani & Seyedali Mirjalili, 2022. "Binary Approaches of Quantum-Based Avian Navigation Optimizer to Select Effective Features from High-Dimensional Medical Data," Mathematics, MDPI, vol. 10(15), pages 1-30, August.
    6. Shuang Wang & Abdelazim G. Hussien & Heming Jia & Laith Abualigah & Rong Zheng, 2022. "Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(10), pages 1-32, May.
    7. Mi Zou & Peng Liu & Xuan Wu & Wei Zhou & Yuan Jin & Meiqi Xu, 2023. "Cognitive Characteristics of an Innovation Team and Collaborative Innovation Performance: The Mediating Role of Cooperative Behavior and the Moderating Role of Team Innovation Efficacy," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
    8. Jianping Zhao & Damin Zhang & Qing He & Lun Li, 2023. "A Hybrid-Strategy-Improved Dragonfly Algorithm for the Parameter Identification of an SDM," Sustainability, MDPI, vol. 15(15), pages 1-35, July.
    9. Sadeq D. Al-Majidi & Hisham Dawood Salman Altai & Mohammed H. Lazim & Mohammed Kh. Al-Nussairi & Maysam F. Abbod & Hamed S. Al-Raweshidy, 2023. "Bacterial Foraging Algorithm for a Neural Network Learning Improvement in an Automatic Generation Controller," Energies, MDPI, vol. 16(6), pages 1-19, March.
    10. Tian, Li & Wang, Qianyun, 2024. "Improving mineral mining enterprises environmental performance through corporate social responsibility practices in China: Implications for minerals policymaking," Resources Policy, Elsevier, vol. 88(C).
    11. Ramachandramoorthi Shanmugapriya & Perichetla Kandaswamy Hemalatha & Lenka Cepova & Jiri Struz, 2023. "A Study of Independency on Fuzzy Resolving Sets of Labelling Graphs," Mathematics, MDPI, vol. 11(16), pages 1-9, August.
    12. Wang, Changlin, 2024. "Social media platform-oriented topic mining and information security analysis by big data and deep convolutional neural network," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    13. Ismail Marouani & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Saleh Albadran & Hsan Hadj Abdallah & Salem Rahmani, 2023. "Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods," Sustainability, MDPI, vol. 15(12), pages 1-58, June.
    14. Abdulaziz Almalaq & Khalid Alqunun & Mohamed M. Refaat & Anouar Farah & Fares Benabdallah & Ziad M. Ali & Shady H. E. Abdel Aleem, 2022. "Towards Increasing Hosting Capacity of Modern Power Systems through Generation and Transmission Expansion Planning," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    15. Ahmad Alzahrani & Ghulam Hafeez & Sajjad Ali & Sadia Murawwat & Muhammad Iftikhar Khan & Khalid Rehman & Azher M. Abed, 2023. "Multi-Objective Energy Optimization with Load and Distributed Energy Source Scheduling in the Smart Power Grid," Sustainability, MDPI, vol. 15(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2840-:d:1178446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.