IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2769-d1174591.html
   My bibliography  Save this article

A Novel Data-Driven Feature Extraction Strategy and Its Application in Looseness Detection of Rotor-Bearing System

Author

Listed:
  • Yulai Zhao

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

  • Junzhe Lin

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

  • Xiaowei Wang

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

  • Qingkai Han

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

  • Yang Liu

    (School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China)

Abstract

During the service of rotating machinery, the pedestal bolts are prone to looseness due to the vibration environment, which affects the performance of rotating machinery and generate potential safety hazard. To monitor the occurrence and deterioration of the pedestal looseness in time, this paper proposes a data-driven diagnosis strategy for the rotor-bearing system. Firstly, the finite element model of a rotor-bearing system is established, which considers the piecewise nonlinear force caused by pedestal looseness. Taking the vibration response as output and periodic unbalanced force as input, the system’s NARX (Nonlinear Auto-Regressive with exogenous inputs) model is identified. Then GALEs (Generalized Associated Linear Equations) are used to evaluate NOFRFs (Nonlinear Output Frequency Response Functions) of the NARX model. Based on the first three-order NOFRFs, the analytical expression of the second-order optimal weighted contribution rate is derived and used as a new health indicator. The simulation results show that compared with the conventional NOFRFs-based health indicator, the new indicator is more sensitive to weak looseness. Finally, a rotor-bearing test rig was built, and the pedestal looseness was performed. The experiment results show that as the degree of looseness increases, the new indicator SRm shows a monotonous upward trend, increasing from 0.48 in no looseness to 0.90 in severe looseness, a rise of 89.7%. However, the traditional indicator Fe2 has no monotonicity, which further verifies the sensitivity of the first three-order NOFRFs-based second-order optimal weighted contribution rate and the effectiveness of the proposed data-driven feature extraction strategy.

Suggested Citation

  • Yulai Zhao & Junzhe Lin & Xiaowei Wang & Qingkai Han & Yang Liu, 2023. "A Novel Data-Driven Feature Extraction Strategy and Its Application in Looseness Detection of Rotor-Bearing System," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2769-:d:1174591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. An, Xueli & Jiang, Dongxiang & Li, Shaohua & Zhao, Minghao, 2011. "Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine," Energy, Elsevier, vol. 36(9), pages 5508-5520.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Shibao & Zhang, Xiaoling & Shang, Yizi & Li, Wei & Skitmore, Martin & Jiang, Shuli & Xue, Yangang, 2018. "Improving Hilbert–Huang transform for energy-correlation fluctuation in hydraulic engineering," Energy, Elsevier, vol. 164(C), pages 1341-1350.
    2. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    3. Xiaoming Xue & Jianzhong Zhou & Yongchuan Zhang & Weibo Zhang & Wenlong Zhu, 2014. "An improved ensemble empirical mode decomposition method and its application to pressure pulsation analysis of hydroelectric generator unit," Journal of Risk and Reliability, , vol. 228(6), pages 543-557, December.
    4. An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
    5. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    6. Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
    7. Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
    8. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2769-:d:1174591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.