A Novel Data-Driven Feature Extraction Strategy and Its Application in Looseness Detection of Rotor-Bearing System
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- An, Xueli & Jiang, Dongxiang & Li, Shaohua & Zhao, Minghao, 2011. "Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine," Energy, Elsevier, vol. 36(9), pages 5508-5520.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Shibao & Zhang, Xiaoling & Shang, Yizi & Li, Wei & Skitmore, Martin & Jiang, Shuli & Xue, Yangang, 2018. "Improving Hilbert–Huang transform for energy-correlation fluctuation in hydraulic engineering," Energy, Elsevier, vol. 164(C), pages 1341-1350.
- Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
- Xiaoming Xue & Jianzhong Zhou & Yongchuan Zhang & Weibo Zhang & Wenlong Zhu, 2014. "An improved ensemble empirical mode decomposition method and its application to pressure pulsation analysis of hydroelectric generator unit," Journal of Risk and Reliability, , vol. 228(6), pages 543-557, December.
- An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
- Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
- Howlader, Abdul Motin & Izumi, Yuya & Uehara, Akie & Urasaki, Naomitsu & Senjyu, Tomonobu & Yona, Atsushi & Saber, Ahmed Yousuf, 2012. "A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system," Energy, Elsevier, vol. 46(1), pages 168-178.
- Li, Jimeng & Chen, Xuefeng & Du, Zhaohui & Fang, Zuowei & He, Zhengjia, 2013. "A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis," Renewable Energy, Elsevier, vol. 60(C), pages 7-19.
- Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
More about this item
Keywords
pedestal looseness; data-driven dynamic; feature extraction; NARX; nonlinear output frequency response functions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2769-:d:1174591. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.