IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2320-d1148235.html
   My bibliography  Save this article

A Mathematical Investigation of Hallucination and Creativity in GPT Models

Author

Listed:
  • Minhyeok Lee

    (School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea)

Abstract

In this paper, we present a comprehensive mathematical analysis of the hallucination phenomenon in generative pretrained transformer (GPT) models. We rigorously define and measure hallucination and creativity using concepts from probability theory and information theory. By introducing a parametric family of GPT models, we characterize the trade-off between hallucination and creativity and identify an optimal balance that maximizes model performance across various tasks. Our work offers a novel mathematical framework for understanding the origins and implications of hallucination in GPT models and paves the way for future research and development in the field of large language models (LLMs).

Suggested Citation

  • Minhyeok Lee, 2023. "A Mathematical Investigation of Hallucination and Creativity in GPT Models," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2320-:d:1148235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W.K., 1992. "Generic Uniform Convergence," Econometric Theory, Cambridge University Press, vol. 8(2), pages 241-257, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Sun & Dongfang Sheng & Zihan Zhou & Yifei Wu, 2024. "AI hallucination: towards a comprehensive classification of distorted information in artificial intelligence-generated content," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    2. Janik Ole Wecks & Johannes Voshaar & Benedikt Jost Plate & Jochen Zimmermann, 2024. "Generative AI Usage and Exam Performance," Papers 2404.19699, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    2. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
    3. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    4. Donald W.K. Andrews & Werner Ploberger, 1994. "Testing for Serial Correlation Against an ARMA(1,1) Process," Cowles Foundation Discussion Papers 1077, Cowles Foundation for Research in Economics, Yale University.
    5. Zhu, Hongtu & Zhang, Heping, 2006. "Asymptotics for estimation and testing procedures under loss of identifiability," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 19-45, January.
    6. Hwang, Eunju & Jeon, ChanHyeok, 2024. "Nonnegative GARCH-type models with conditional Gamma distributions and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    7. Ketz, Philipp, 2019. "Testing overidentifying restrictions with a restricted parameter space," Economics Letters, Elsevier, vol. 185(C).
    8. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    9. Xiaoxia Shi, 2015. "A nondegenerate Vuong test," Quantitative Economics, Econometric Society, vol. 6(1), pages 85-121, March.
    10. Blevins, Jason R. & Kim, Minhae, 2024. "Nested Pseudo likelihood estimation of continuous-time dynamic discrete games," Journal of Econometrics, Elsevier, vol. 238(2).
    11. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    12. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    13. Jenish, Nazgul & Prucha, Ingmar R., 2009. "Central limit theorems and uniform laws of large numbers for arrays of random fields," Journal of Econometrics, Elsevier, vol. 150(1), pages 86-98, May.
    14. Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
    15. Donggyu Kim & Minseog Oh & Yazhen Wang, 2022. "Conditional quantile analysis for realized GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 640-665, July.
    16. Shi, Xiaoxia, 2015. "Model selection tests for moment inequality models," Journal of Econometrics, Elsevier, vol. 187(1), pages 1-17.
    17. Antonio Merlo & Áureo de Paula, 2017. "Identification and Estimation of Preference Distributions When Voters Are Ideological," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(3), pages 1238-1263.
    18. Mueller, Ulrich & Petalas, Philippe-Emmanuel, 2007. "Efficient Estimation of the Parameter Path in Unstable Time Series Models," MPRA Paper 2260, University Library of Munich, Germany.
    19. Dohyun Chun & Donggyu Kim, 2022. "State Heterogeneity Analysis of Financial Volatility using high‐frequency Financial Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 105-124, January.
    20. Kim, Donggyu & Song, Xinyu & Wang, Yazhen, 2022. "Unified discrete-time factor stochastic volatility and continuous-time Itô models for combining inference based on low-frequency and high-frequency," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2320-:d:1148235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.