IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p155-d1017989.html
   My bibliography  Save this article

Quasar Identification Using Multivariate Probability Density Estimated from Nonparametric Conditional Probabilities

Author

Listed:
  • Jenny Farmer

    (Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
    Affiliate Faculty of the UNC Charlotte School of Data Science.)

  • Eve Allen

    (Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA)

  • Donald J. Jacobs

    (Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
    Affiliate Faculty of the UNC Charlotte School of Data Science.)

Abstract

Nonparametric estimation for a probability density function that describes multivariate data has typically been addressed by kernel density estimation (KDE). A novel density estimator recently developed by Farmer and Jacobs offers an alternative high-throughput automated approach to univariate nonparametric density estimation based on maximum entropy and order statistics, improving accuracy over univariate KDE. This article presents an extension of the single variable case to multiple variables. The univariate estimator is used to recursively calculate a product array of one-dimensional conditional probabilities. In combination with interpolation methods, a complete joint probability density estimate is generated for multiple variables. Good accuracy and speed performance in synthetic data are demonstrated by a numerical study using known distributions over a range of sample sizes from 100 to 10 6 for two to six variables. Performance in terms of speed and accuracy is compared to KDE. The multivariate density estimate developed here tends to perform better as the number of samples and/or variables increases. As an example application, measurements are analyzed over five filters of photometric data from the Sloan Digital Sky Survey Data Release 17. The multivariate estimation is used to form the basis for a binary classifier that distinguishes quasars from galaxies and stars with up to 94% accuracy.

Suggested Citation

  • Jenny Farmer & Eve Allen & Donald J. Jacobs, 2022. "Quasar Identification Using Multivariate Probability Density Estimated from Nonparametric Conditional Probabilities," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:155-:d:1017989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
    2. Yi Jin & Yulin He & Defa Huang, 2021. "An Improved Variable Kernel Density Estimator Based on L 2 Regularization," Mathematics, MDPI, vol. 9(16), pages 1-12, August.
    3. Wendong Li & Chi Zhang & Fugee Tsung & Yajun Mei, 2021. "Nonparametric monitoring of multivariate data via KNN learning," International Journal of Production Research, Taylor & Francis Journals, vol. 59(20), pages 6311-6326, October.
    4. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK, 2010. "Nonparametric density estimation for multivariate bounded data," LIDAM Reprints CORE 2301, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    6. Joseph Ngatchou-Wandji & Marwa Ltaifa & Didier Alain Njamen Njomen & Jia Shen, 2022. "Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    7. Nan Yang & Yu Huang & Dengxu Hou & Songkai Liu & Di Ye & Bangtian Dong & Youping Fan, 2019. "Adaptive Nonparametric Kernel Density Estimation Approach for Joint Probability Density Function Modeling of Multiple Wind Farms," Energies, MDPI, vol. 12(7), pages 1-15, April.
    8. Jiecheng Wang & Yantong Liu & Jincai Chang, 2022. "An Improved Model for Kernel Density Estimation Based on Quadtree and Quasi-Interpolation," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    3. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    4. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    5. Gaku Igarashi, 2018. "Multivariate Density Estimation Using a Multivariate Weighted Log-Normal Kernel," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 247-266, August.
    6. Kakizawa, Yoshihide, 2022. "Multivariate elliptical-based Birnbaum–Saunders kernel density estimation for nonnegative data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    7. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    8. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    9. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.
    11. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    12. Doho, Libaud Rudy Aurelien & Somé, Sobom Matthieu & Banto, Jean Michel, 2023. "Inflation and west African sectoral stock price indices: An asymmetric kernel method analysis," Emerging Markets Review, Elsevier, vol. 54(C).
    13. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    14. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    15. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    16. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    17. Bouezmarni, T. & Mesfioui, M. & Rolin, J.M., 2007. "L1-rate of convergence of smoothed histogram," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1497-1504, August.
    18. Pipat Wongsaart & Jiti Gao, 2011. "Nonparametric Kernel Testing in Semiparametric Autoregressive Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 18/11, Monash University, Department of Econometrics and Business Statistics.
    19. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
    20. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:155-:d:1017989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.