IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1457-d802747.html
   My bibliography  Save this article

An Improved Three-Way Clustering Based on Ensemble Strategy

Author

Listed:
  • Tingfeng Wu

    (School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Jiachen Fan

    (School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

  • Pingxin Wang

    (School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

Abstract

As a powerful data analysis technique, clustering plays an important role in data mining. Traditional hard clustering uses one set with a crisp boundary to represent a cluster, which cannot solve the problem of inaccurate decision-making caused by inaccurate information or insufficient data. In order to solve this problem, three-way clustering was presented to show the uncertainty information in the dataset by adding the concept of fringe region. In this paper, we present an improved three-way clustering algorithm based on an ensemble strategy. Different to the existing clustering ensemble methods by using various clustering algorithms to produce the base clustering results, the proposed algorithm randomly extracts a feature subset of samples and uses the traditional clustering algorithm to obtain the diverse base clustering results. Based on the base clustering results, labels matching is used to align all clustering results in a given order and voting method is used to obtain the core region and the fringe region of the three way clustering. The proposed algorithm can be applied on the top of any existing hard clustering algorithm to generate the base clustering results. As examples for demonstration, we apply the proposed algorithm on the top of K-means and spectral clustering, respectively. The experimental results show that the proposed algorithm is effective in revealing cluster structures.

Suggested Citation

  • Tingfeng Wu & Jiachen Fan & Pingxin Wang, 2022. "An Improved Three-Way Clustering Based on Ensemble Strategy," Mathematics, MDPI, vol. 10(9), pages 1-22, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1457-:d:802747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin Zhu & Dongqin Jiang & Pingxin Wang & Jian Lin, 2022. "A Three-step Method for Three-way Clustering by Similarity-based Sample’s Stability," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Yin & Yan Fan & Pingxin Wang & Jianjun Chen, 2023. "Parallel Selector for Feature Reduction," Mathematics, MDPI, vol. 11(9), pages 1-33, April.
    2. Chunmei Huang & Bingbing Fan & Chunmao Jiang, 2023. "A Task Orchestration Strategy in a Cloud-Edge Environment Based on Intuitionistic Fuzzy Sets," Mathematics, MDPI, vol. 12(1), pages 1-16, December.
    3. Anlong Li & Yiping Meng & Pingxin Wang, 2024. "Similarity-Based Three-Way Clustering by Using Dimensionality Reduction," Mathematics, MDPI, vol. 12(13), pages 1-19, June.
    4. Jiachen Fan & Xiaoxiao Wang & Tingfeng Wu & Jin Zhu & Pingxin Wang, 2022. "Three-Way Ensemble Clustering Based on Sample’s Perturbation Theory," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    5. Yan Liu & Changshun Liu & Jingjing Song & Xibei Yang & Taihua Xu & Pingxin Wang, 2023. "Multi-Scale Annulus Clustering for Multi-Label Classification," Mathematics, MDPI, vol. 11(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1457-:d:802747. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.