IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1401-d799643.html
   My bibliography  Save this article

Analytic Approximation for American Straddle Options

Author

Listed:
  • Joanna Goard

    (School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia)

  • Mohammed AbaOud

    (Department of Mathematics and Statistics, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia)

Abstract

This paper looks at adapting a recent approach found in the literature for pricing short-term American options to price American straddle options with two free boundaries. We provide a series solution in which explicit formulas for the coefficients are given. Hence, no complicated, recursive systems or nonlinear integral equations need to be solved, and the method efficiently provides fast solutions. We also compare the method with a numerical method and find that it gives very accurate prices not only for the option value, but also for the critical stock prices.

Suggested Citation

  • Joanna Goard & Mohammed AbaOud, 2022. "Analytic Approximation for American Straddle Options," Mathematics, MDPI, vol. 10(9), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1401-:d:799643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi Qiu, 2020. "American Strangle Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(3), pages 228-263, May.
    2. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    3. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.
    4. Kim, In Joon, 1990. "The Analytic Valuation of American Options," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    2. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    3. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    4. Andrew Ziogas & Carl Chiarella, 2003. "McKean’s Method applied to American Call Options on Jump-Diffusion Processes," Computing in Economics and Finance 2003 39, Society for Computational Economics.
    5. Junkee Jeon & Geonwoo Kim, 2022. "Analytic Valuation Formula for American Strangle Option in the Mean-Reversion Environment," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    6. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    7. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2015. "Real Options and American Derivatives: The Double Continuation Region," Management Science, INFORMS, vol. 61(5), pages 1094-1107, May.
    8. Jun Cheng & Jin Zhang, 2012. "Analytical pricing of American options," Review of Derivatives Research, Springer, vol. 15(2), pages 157-192, July.
    9. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    10. Franck Moraux, 2009. "On perpetual American strangles," Post-Print halshs-00393811, HAL.
    11. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    12. Song-Ping Zhu & Xin-Jiang He & XiaoPing Lu, 2018. "A new integral equation formulation for American put options," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 483-490, March.
    13. Tsvetelin S. Zaevski, 2023. "American strangle options with arbitrary strikes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 880-903, July.
    14. Shi Qiu & Sovan Mitra, 2018. "Mathematical Properties Of American Chooser Options," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-30, December.
    15. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    16. Carl Chiarella & Adam Kucera & Andrew Ziogas, 2004. "A Survey of the Integral Representation of American Option Prices," Research Paper Series 118, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Detemple, Jérôme & Emmerling, Thomas, 2009. "American chooser options," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 128-153, January.
    18. Rachel Kuske & Joseph Keller, 1998. "Optimal exercise boundary for an American put option," Applied Mathematical Finance, Taylor & Francis Journals, vol. 5(2), pages 107-116.
    19. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    20. Xuemei Gao & Dongya Deng & Yue Shan, 2014. "Lattice Methods for Pricing American Strangles with Two-Dimensional Stochastic Volatility Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-6, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1401-:d:799643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.