IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1288-d792471.html
   My bibliography  Save this article

Edge of Chaos in Memristor Cellular Nonlinear Networks

Author

Listed:
  • Angela Slavova

    (Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria)

  • Ventsislav Ignatov

    (Laboratory of Engineering Mathematics, Ruse University “Angel Kanchev”, 7017 Ruse, Bulgaria)

Abstract

Information processing in the brain takes place in a dense network of neurons connected through synapses. The collaborative work between these two components (Synapses and Neurons) allows for basic brain functions such as learning and memorization. The so-called von Neumann bottleneck, which limits the information processing capability of conventional systems, can be overcome by the efficient emulation of these computational concepts. To this end, mimicking the neuronal architectures with silicon-based circuits, on which neuromorphic engineering is based, is accompanied by the development of new devices with neuromorphic functionalities. We shall study different memristor cellular nonlinear networks models. The rigorous mathematical analysis will be presented based on local activity theory, and the edge of chaos domain will be determined in the models under consideration. Simulations of these models working on the edge of chaos will show the generation of static and dynamic patterns.

Suggested Citation

  • Angela Slavova & Ventsislav Ignatov, 2022. "Edge of Chaos in Memristor Cellular Nonlinear Networks," Mathematics, MDPI, vol. 10(8), pages 1-11, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1288-:d:792471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joel Hochstetter & Ruomin Zhu & Alon Loeffler & Adrian Diaz-Alvarez & Tomonobu Nakayama & Zdenka Kuncic, 2021. "Avalanches and edge-of-chaos learning in neuromorphic nanowire networks," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Woo, Junhyuk & Kim, Soon Ho & Kim, Hyeongmo & Han, Kyungreem, 2024. "Characterization of the neuronal and network dynamics of liquid state machines," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Gianluca Milano & Alessandro Cultrera & Luca Boarino & Luca Callegaro & Carlo Ricciardi, 2023. "Tomography of memory engrams in self-organizing nanowire connectomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1288-:d:792471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.