IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1253-d791207.html
   My bibliography  Save this article

Physical Modeling and Structural Properties of Small-Scale Mine Ventilation Networks

Author

Listed:
  • David-Fernando Novella-Rodriguez

    (Engineering and Technology Department, Universidad de Monterrey UDEM, Av. I. Morones Prieto 4500, San Pedro Garza Garcia 66238, Mexico
    David-F. Novella-Rodriguez thanks to the Secretary of Education, Sciences, Technology and Innovation of Mexico City for the support under the grant SECITI/079/2017.)

  • Emmanuel Witrant

    (GIPSA Lab, Automatic Control Department, Université Grenoble, 38000 Grenoble, France)

  • Christian Commault

    (GIPSA Lab, Automatic Control Department, Université Grenoble, 38000 Grenoble, France)

Abstract

This work is devoted to the modeling and structural analysis of ventilation networks in small-scale mines using a physically oriented modeling method that ensures power conservation. Small-scale mines are common in the mineral extraction industry of underdeveloped countries and their physical characteristics are taken into account in the modeling process. The geometrical topology of the ventilation network in addition with the conservation laws of the fluid distribution along the network are considered in order to obtain a simple modeling methodology. Non-linear characteristics of the interconnected fluid dynamics represent a challenge to determine significant features of the system from a control point of view. Observability and controllability properties are analyzed by considering the structural systems approach. An structural analysis provides information based on the network topology independently of the mine parameters allowing the number of sensors and actuators to be reduced while also preserving the observability and controllability of the ventilation system. Experimental results are provided by building a small-scale ventilation network benchmark to evaluate the proposed model and its properties.

Suggested Citation

  • David-Fernando Novella-Rodriguez & Emmanuel Witrant & Christian Commault, 2022. "Physical Modeling and Structural Properties of Small-Scale Mine Ventilation Networks," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1253-:d:791207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    2. Sui, Jinxue & Yang, Li & Hu, Yunan, 2016. "Complex fluid network optimization and control integrative design based on nonlinear dynamic model," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 20-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    2. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    3. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    4. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    5. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    6. Bo Zhang & Jianping Yuan & J. F. Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Global Feedback Control for Coordinated Linear Switched Reluctance Machines Network with Full-State Observation and Internal Model Compensation," Energies, MDPI, vol. 10(12), pages 1-19, December.
    7. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    9. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    10. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    11. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    12. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    13. Zabka, Philipp & Förster, Klaus-T. & Decker, Christian & Schmid, Stefan, 2024. "A centrality analysis of the Lightning Network," Telecommunications Policy, Elsevier, vol. 48(2).
    14. Neil Johnson & Guannan Zhao & Eric Hunsader & Jing Meng & Amith Ravindar & Spencer Carran & Brian Tivnan, 2012. "Financial black swans driven by ultrafast machine ecology," Papers 1202.1448, arXiv.org.
    15. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    16. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    17. Badhwar, Rahul & Bagler, Ganesh, 2017. "A distance constrained synaptic plasticity model of C. elegans neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 313-322.
    18. Lazaro M Sanchez-Rodriguez & Yasser Iturria-Medina & Erica A Baines & Sabela C Mallo & Mehdy Dousty & Roberto C Sotero & on behalf of The Alzheimer’s Disease Neuroimaging Initiative, 2018. "Design of optimal nonlinear network controllers for Alzheimer's disease," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-24, May.
    19. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    20. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1253-:d:791207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.