IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p809-d763328.html
   My bibliography  Save this article

Unsupervised and Supervised Methods to Estimate Temporal-Aware Contradictions in Online Course Reviews

Author

Listed:
  • Ismail Badache

    (Department of Computer Science, Aix Marseille Université, CNRS, LIS, 13007 Marseille, France)

  • Adrian-Gabriel Chifu

    (Department of Computer Science, Aix Marseille Université, CNRS, LIS, 13007 Marseille, France)

  • Sébastien Fournier

    (Department of Computer Science, Aix Marseille Université, CNRS, LIS, 13007 Marseille, France)

Abstract

The analysis of user-generated content on the Internet has become increasingly popular for a wide variety of applications. One particular type of content is represented by the user reviews for programs, multimedia, products, and so on. Investigating the opinion contained by reviews may help in following the evolution of the reviewed items and thus in improving their quality. Detecting contradictory opinions in reviews is crucial when evaluating the quality of the respective resource. This article aims to estimate the contradiction intensity (strength) in the context of online courses (MOOC). This estimation was based on review ratings and on sentiment polarity in the comments, with respect to specific aspects, such as “lecturer”, “presentation”, etc. Between course sessions, users stop reviewing, and also, the course contents may evolve. Thus, the reviews are time dependent, and this is why they should be considered grouped by the course sessions. Having this in mind, the contribution of this paper is threefold: (a) defining the notion of subjective contradiction around specific aspects and then estimating its intensity based on sentiment polarity, review ratings, and temporality; (b) developing a dataset to evaluate the contradiction intensity measure, which was annotated based on a user study; (c) comparing our unsupervised method with supervised methods with automatic feature selection, over the dataset. The dataset collected from coursera.org is in English. It includes 2244 courses and 73,873 user-generated reviews of those courses.The results proved that the standard deviation of the ratings, the standard deviation of the polarities, and the number of reviews are suitable features for predicting the contradiction intensity classes. Among the supervised methods, the J48 decision trees algorithm yielded the best performance, compared to the naive Bayes model and the SVM model.

Suggested Citation

  • Ismail Badache & Adrian-Gabriel Chifu & Sébastien Fournier, 2022. "Unsupervised and Supervised Methods to Estimate Temporal-Aware Contradictions in Online Course Reviews," Mathematics, MDPI, vol. 10(5), pages 1-24, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:809-:d:763328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vasile-Daniel Păvăloaia & Elena-Mădălina Teodor & Doina Fotache & Magdalena Danileţ, 2019. "Opinion Mining on Social Media Data: Sentiment Analysis of User Preferences," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florentina Hristea & Cornelia Caragea, 2022. "Preface to the Special Issue “Natural Language Processing (NLP) and Machine Learning (ML)—Theory and Applications”," Mathematics, MDPI, vol. 10(14), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laith T. Khrais, 2020. "Role of Artificial Intelligence in Shaping Consumer Demand in E-Commerce," Future Internet, MDPI, vol. 12(12), pages 1-14, December.
    2. Irina Kalabikhina & Vadim Moshkin & Anton Kolotusha & Maksim Kashin & German Klimenko & Zarina Kazbekova, 2024. "Advancing Semantic Classification: A Comprehensive Examination of Machine Learning Techniques in Analyzing Russian-Language Patient Reviews," Mathematics, MDPI, vol. 12(4), pages 1-17, February.
    3. Myriam Caratù & Valerio Brescia & Ilaria Pigliautile & Paolo Biancone, 2023. "Assessing Energy Communities’ Awareness on Social Media with a Content and Sentiment Analysis," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    4. Magdalena Roszczyńska-Kurasińska & Anna Domaradzka & Bartosz Ślosarski & Agata Żbikowska, 2021. "Facebook Data as Part of Cultural Heritage Investments Toolbox: Pilot Analysis of Users Interests and Preferences Concerning Adaptive Reuse," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    5. Carlos Ruiz-Núñez & Ivan Herrera-Peco & Silvia María Campos-Soler & Álvaro Carmona-Pestaña & Elvira Benítez de Gracia & Juan José Peña Deudero & Andrés Ignacio García-Notario, 2023. "Sentiment Analysis on Twitter: Role of Healthcare Professionals in the Global Conversation during the AstraZeneca Vaccine Suspension," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
    6. Johannes Hangl & Viktoria Joy Behrens & Simon Krause, 2022. "Barriers, Drivers, and Social Considerations for AI Adoption in Supply Chain Management: A Tertiary Study," Logistics, MDPI, vol. 6(3), pages 1-22, September.
    7. Bahareh Farhoudinia & Selcen Ozturkcan & Nihat Kasap, 2024. "Emotions unveiled: detecting COVID-19 fake news on social media," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:809-:d:763328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.