IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p581-d748305.html
   My bibliography  Save this article

Network Representation Learning Algorithm Based on Complete Subgraph Folding

Author

Listed:
  • Dongming Chen

    (Software College, Northeastern University, Shenyang 110169, China)

  • Mingshuo Nie

    (Software College, Northeastern University, Shenyang 110169, China)

  • Jiarui Yan

    (Software College, Northeastern University, Shenyang 110169, China)

  • Dongqi Wang

    (Software College, Northeastern University, Shenyang 110169, China)

  • Qianqian Gan

    (Software College, Northeastern University, Shenyang 110169, China)

Abstract

Network representation learning is a machine learning method that maps network topology and node information into low-dimensional vector space. Network representation learning enables the reduction of temporal and spatial complexity in the downstream data mining of networks, such as node classification and graph clustering. Existing algorithms commonly ignore the global topological information of the network in network representation learning, leading to information loss. The complete subgraph in the network commonly has a community structure, or it is the component module of the community structure. We believe that the structure of the community serves as the revealed structure in the topology of the network and preserves global information. In this paper, we propose SF-NRL, a network representation learning algorithm based on complete subgraph folding. The algorithm preserves the global topological information of the original network completely, by finding complete subgraphs in the original network and folding them into the super nodes. We employ the network representation learning algorithm to study the node embeddings on the folded network, and then merge the embeddings of the folded network with those of the original network to obtain the final node embeddings. Experiments performed on four real-world networks prove the effectiveness of the SF-NRL algorithm. The proposed algorithm outperforms the baselines in evaluation metrics on community detection and multi-label classification tasks. The proposed algorithm can effectively generalize the global information of the network and provides excellent classification performance.

Suggested Citation

  • Dongming Chen & Mingshuo Nie & Jiarui Yan & Dongqi Wang & Qianqian Gan, 2022. "Network Representation Learning Algorithm Based on Complete Subgraph Folding," Mathematics, MDPI, vol. 10(4), pages 1-13, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:581-:d:748305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/581/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/581/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Qiong & Wu, Ting-Ting & Fang, Ming, 2013. "Detecting local community structures in complex networks based on local degree central nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(3), pages 529-537.
    2. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Junfang & Ren, Xuezao & Ma, Peijie & Gao, Kun & Wang, Bing-Hong & Zhou, Tao, 2022. "Detecting network communities via greedy expanding based on local superiority index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    3. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    4. Rezvanian, Alireza & Meybodi, Mohammad Reza, 2015. "Sampling social networks using shortest paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 254-268.
    5. Kong, Hanzhang & Kang, Qinma & Li, Wenquan & Liu, Chao & Kang, Yunfan & He, Hong, 2019. "A hybrid iterated carousel greedy algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    7. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    8. Fatemi, Samira & Salehi, Mostafa & Veisi, Hadi & Jalili, Mahdi, 2018. "A fuzzy logic based estimator for respondent driven sampling of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 42-51.
    9. Zhao, Shuying & Sun, Shaowei, 2023. "Identification of node centrality based on Laplacian energy of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    10. Zhe Li & Xinyu Huang, 2023. "Identifying Influential Spreaders Using Local Information," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    11. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
    12. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    13. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    14. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    15. Huang, Chung-Yuan & Chin, Wei-Chien-Benny & Fu, Yu-Hsiang & Tsai, Yu-Shiuan, 2019. "Beyond bond links in complex networks:Local bridges, global bridges and silk links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    16. Cheng, Le & Li, Xianghua & Han, Zhen & Luo, Tengyun & Ma, Lianbo & Zhu, Peican, 2022. "Path-based multi-sources localization in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    17. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    18. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    19. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    20. Hu, Fang & Liu, Jia & Li, Liuhuan & Liang, Jun, 2020. "Community detection in complex networks using Node2vec with spectral clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:581-:d:748305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.