IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p449-d738774.html
   My bibliography  Save this article

Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using Machine Learning Approaches: t-SNE, K-Means Clustering and XGBoost

Author

Listed:
  • Barkat Ullah

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Muhammad Kamran

    (Department of Mining Engineering, Institute Technology of Bandung, Bandung 40132, Indonesia)

  • Yichao Rui

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

Accurate prediction of short-term rockburst has a significant role in improving the safety of workers in mining and geotechnical projects. The rockburst occurrence is nonlinearly correlated with its influencing factors that guarantee imprecise predicting results by employing the traditional methods. In this study, three approaches including including t-distributed stochastic neighbor embedding (t-SNE), K-means clustering, and extreme gradient boosting (XGBoost) were employed to predict the short-term rockburst risk. A total of 93 rockburst patterns with six influential features from micro seismic monitoring events of the Jinping-II hydropower project in China were used to create the database. The original data were randomly split into training and testing sets with a 70/30 splitting ratio. The prediction practice was followed in three steps. Firstly, a state-of-the-art data reduction mechanism t-SNE was employed to reduce the exaggeration of the rockburst database. Secondly, an unsupervised machine learning, i.e., K-means clustering, was adopted to categorize the t-SNE dataset into various clusters. Thirdly, a supervised gradient boosting machine learning method i.e., XGBoost was utilized to predict various levels of short-term rockburst database. The classification accuracy of XGBoost was checked using several performance indices. The results of the proposed model serve as a great benchmark for future short-term rockburst levels prediction with high accuracy.

Suggested Citation

  • Barkat Ullah & Muhammad Kamran & Yichao Rui, 2022. "Predictive Modeling of Short-Term Rockburst for the Stability of Subsurface Structures Using Machine Learning Approaches: t-SNE, K-Means Clustering and XGBoost," Mathematics, MDPI, vol. 10(3), pages 1-20, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:449-:d:738774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/449/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niaz Muhammad Shahani & Barkat Ullah & Kausar Sultan Shah & Fawad Ul Hassan & Rashid Ali & Mohamed Abdelghany Elkotb & Mohamed E. Ghoneim & Elsayed M. Tag-Eldin, 2022. "Predicting Angle of Internal Friction and Cohesion of Rocks Based on Machine Learning Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:449-:d:738774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.