IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p445-d738577.html
   My bibliography  Save this article

Do Commodities React More to Time-Varying Rare Disaster Risk? A Comparison of Commodity and Financial Assets

Author

Listed:
  • Peng Chen

    (Department of Finance, School of Economics, Jinan University, Guangzhou 510632, China
    Southern China Institute of Finance, Jinan University, Guangzhou 510632, China)

  • Ting Huang

    (Department of Finance, School of Economics, Jinan University, Guangzhou 510632, China
    Research & Development Center, Agricultural Bank of China, Guangzhou 511408, China)

Abstract

Using a rare disaster risk database from almost the last one hundred years, we examine the differences in the reaction of asset prices to rare disaster risk between commodity and financial assets. We first employ time-varying parameter VAR (TVP-VAR) models to investigate the role of rare disaster risk in the price dynamics of major asset markets. The results indicate that disaster risk generally has a more intense and persistent impact on crude oil and stock markets when compared to gold and bond markets. However, the role of rare disaster risk differs substantially between commodity and financial assets, as well as between the short and long term. Moreover, when using a nonparametric causality-in-quantiles method to detect causal relationships, we provide evidence of the nonlinear causality effect of rare disaster risks on asset volatilities, and not their returns, except for crude oil. In addition, we demonstrate that augmenting a diversified portfolio of stock or bonds with gold can significantly increase its risk-adjusted performance. The findings have important implications for investors as well as policymakers.

Suggested Citation

  • Peng Chen & Ting Huang, 2022. "Do Commodities React More to Time-Varying Rare Disaster Risk? A Comparison of Commodity and Financial Assets," Mathematics, MDPI, vol. 10(3), pages 1-25, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:445-:d:738577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dirk G. Baur & Brian M. Lucey, 2010. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
    2. Jessica A. Wachter, 2013. "Can Time-Varying Risk of Rare Disasters Explain Aggregate Stock Market Volatility?," Journal of Finance, American Finance Association, vol. 68(3), pages 987-1035, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Duc Binh Benno & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "The risk premium of gold," Journal of International Money and Finance, Elsevier, vol. 94(C), pages 140-159.
    2. Balcilar, Mehmet & Gupta, Rangan & Nel, Jacobus, 2022. "Rare disaster risks and gold over 700 years: Evidence from nonparametric quantile regressions," Resources Policy, Elsevier, vol. 79(C).
    3. Yousaf, Imran & Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2024. "Dynamic spillovers and connectedness between crude oil and green bond markets," Resources Policy, Elsevier, vol. 89(C).
    4. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    5. Bouri, Elie & Lucey, Brian & Roubaud, David, 2020. "Cryptocurrencies and the downside risk in equity investments," Finance Research Letters, Elsevier, vol. 33(C).
    6. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.
    7. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    8. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    9. Mongi Arfaoui & Aymen Ben Rejeb, 2017. "Oil, gold, US dollar and stock market interdependencies: a global analytical insight," European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 26(3), pages 278-293, October.
    10. Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures," Energies, MDPI, vol. 12(17), pages 1-17, September.
    11. Bakas, Dimitrios & Triantafyllou, Athanasios, 2020. "Commodity price volatility and the economic uncertainty of pandemics," Economics Letters, Elsevier, vol. 193(C).
    12. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    13. Jin, Changlun & Tian, Xiujuan, 2024. "Enhanced safe-haven status of Bitcoin: Evidence from the Silicon Valley Bank collapse," Finance Research Letters, Elsevier, vol. 59(C).
    14. Tim Leung & Brian Ward, 2015. "The golden target: analyzing the tracking performance of leveraged gold ETFs," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(3), pages 278-297, August.
    15. Vicente J. Bolós & Rafael Benítez & Román Ferrer, 2020. "A New Wavelet Tool to Quantify Non-Periodicity of Non-Stationary Economic Time Series," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    16. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    17. Benjamin Hippert & André Uhde & Sascha Tobias Wengerek, 2019. "Portfolio benefits of adding corporate credit default swap indices: evidence from North America and Europe," Review of Derivatives Research, Springer, vol. 22(2), pages 203-259, July.
    18. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    19. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    20. Goodell, John W. & Goutte, Stephane, 2021. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 38(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:445-:d:738577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.