IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i2p278-d726297.html
   My bibliography  Save this article

Geometric Compatibility Indexes in a Local AHP-Group Decision Making Context: A Framework for Reducing Incompatibility

Author

Listed:
  • Juan Aguarón

    (Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain)

  • María Teresa Escobar

    (Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain)

  • José María Moreno-Jiménez

    (Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain)

  • Alberto Turón

    (Grupo Decisión Multicriterio Zaragoza (GDMZ), Facultad de Economía y Empresa, Universidad de Zaragoza, Gran Vía 2, 50005 Zaragoza, Spain)

Abstract

This paper deals with the measurement of the compatibility in a local AHP-Group Decision Making context. Compatibility between two individuals or decision makers is understood as the property that reflects the proximity between their positions or preferences, usually measured by a distance function. An acceptable level of incompatibility between the individual and the group positions will favour the acceptance of the collective position by the individuals. To facilitate the compatibility measurement, the paper utilises four indicators based on log quadratic distances between matrices or vectors which can be employed in accordance with the information that is available from the individual decision makers and from the group. The indicators make it possible to measure compatibility in decision problems, regardless of how the collective position and the priorities are obtained. The paper also presents a theoretical framework and a general, semi-automatic procedure for reducing the incompatibility measured by the four indicators. Using relative variations, the procedure identifies and slightly modifies the judgement of the collective matrix that further improves the indicator. This process is undertaken without modifying the initial information provided by the individuals. A numerical example illustrates the application of the theoretical framework and the procedure.

Suggested Citation

  • Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2022. "Geometric Compatibility Indexes in a Local AHP-Group Decision Making Context: A Framework for Reducing Incompatibility," Mathematics, MDPI, vol. 10(2), pages 1-20, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:278-:d:726297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/2/278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/2/278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 2003. "Decision-making with the AHP: Why is the principal eigenvector necessary," European Journal of Operational Research, Elsevier, vol. 145(1), pages 85-91, February.
    2. Alfredo Altuzarra & José María Moreno-Jiménez & Manuel Salvador, 2010. "Consensus Building in AHP-Group Decision Making: A Bayesian Approach," Operations Research, INFORMS, vol. 58(6), pages 1755-1773, December.
    3. Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez & Manuel Salvador, 2019. "Homogeneous Groups of Actors in an AHP-Local Decision Making Context: A Bayesian Analysis," Mathematics, MDPI, vol. 7(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2023. "Reducing incompatibility in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 326(1), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2023. "Reducing incompatibility in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 326(1), pages 1-26, July.
    2. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    3. May, Jerrold H. & Shang, Jennifer & Tjader, Youxu Cai & Vargas, Luis G., 2013. "A new methodology for sensitivity and stability analysis of analytic network models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 180-188.
    4. Kou, Gang & Ergu, Daji & Shang, Jennifer, 2014. "Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction," European Journal of Operational Research, Elsevier, vol. 236(1), pages 261-271.
    5. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    6. Alfredo Altuzarra & Pilar Gargallo & José María Moreno-Jiménez & Manuel Salvador, 2022. "Identification of Homogeneous Groups of Actors in a Local AHP-Multiactor Context with a High Number of Decision-Makers: A Bayesian Stochastic Search," Mathematics, MDPI, vol. 10(3), pages 1-20, February.
    7. Aguarón, Juan & Escobar, María Teresa & Moreno-Jiménez, José María, 2021. "Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 288(2), pages 576-583.
    8. Fang, Lei, 2022. "Measuring and decomposing group performance under centralized management," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1006-1013.
    9. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    10. Carmen Herrero & Antonio Villar, 2022. "Sports competitions and the Break-Even rule," Working Papers 22.13, Universidad Pablo de Olavide, Department of Economics.
    11. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    12. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    13. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    14. Baghersad, Milad & Zobel, Christopher W., 2015. "Economic impact of production bottlenecks caused by disasters impacting interdependent industry sectors," International Journal of Production Economics, Elsevier, vol. 168(C), pages 71-80.
    15. Aniruddh Nain & Deepika Jain & Shivam Gupta & Ashwani Kumar, 2023. "Improving First Responders' Effectiveness in Post-Disaster Scenarios Through a Hybrid Framework for Damage Assessment and Prioritization," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 409-437, September.
    16. Andrzej Pacana & Dominika Siwiec & Robert Ulewicz & Malgorzata Ulewicz, 2024. "A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    17. Roh, Seungkook & Choi, Jae Young & Chang, Soon Heung, 2019. "Modeling of nuclear power plant export competitiveness and its implications: The case of Korea," Energy, Elsevier, vol. 166(C), pages 157-169.
    18. Fu, Chao & Yang, Shanlin, 2012. "An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements," European Journal of Operational Research, Elsevier, vol. 223(1), pages 167-176.
    19. Valdecy Pereira & Helder Costa, 2015. "Nonlinear programming applied to the reduction of inconsistency in the AHP method," Annals of Operations Research, Springer, vol. 229(1), pages 635-655, June.
    20. Carlos Andrés Vergara Tamayo & Diana Carolina Ortiz Motta, 2016. "Contribución al desarrollo sostenible local de los proyectos MDL en el sector de generación eléctrica por biomasa: caso INCAUCA S.A," Revista Facultad de Ciencias Económicas, Universidad Militar Nueva Granada, vol. 24(2), pages 161-182, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:278-:d:726297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.