Intelligent Prediction of Customer Churn with a Fused Attentional Deep Learning Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Amin, Adnan & Al-Obeidat, Feras & Shah, Babar & Adnan, Awais & Loo, Jonathan & Anwar, Sajid, 2019. "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, Elsevier, vol. 94(C), pages 290-301.
- Li, Yixin & Hou, Bingzhang & Wu, Yue & Zhao, Donglai & Xie, Aoran & Zou, Peng, 2021. "Giant fight: Customer churn prediction in traditional broadcast industry," Journal of Business Research, Elsevier, vol. 131(C), pages 630-639.
- Xin Lu & Donghong Gu & Haolan Zhang & Zhengxin Song & Qianhua Cai & Hongya Zhao & Haiming Wu, 2022. "Semi-Supervised Sentiment Classification on E-Commerce Reviews Using Tripartite Graph and Clustering," International Journal of Data Warehousing and Mining (IJDWM), IGI Global, vol. 18(1), pages 1-20, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
- Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
- Villarroel Ordenes, Francisco & Silipo, Rosaria, 2021. "Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications," Journal of Business Research, Elsevier, vol. 137(C), pages 393-410.
- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Ibrahim Al-Shourbaji & Na Helian & Yi Sun & Samah Alshathri & Mohamed Abd Elaziz, 2022. "Boosting Ant Colony Optimization with Reptile Search Algorithm for Churn Prediction," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
- Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
- Lewlisa Saha & Hrudaya Kumar Tripathy & Tarek Gaber & Hatem El-Gohary & El-Sayed M. El-kenawy, 2023. "Deep Churn Prediction Method for Telecommunication Industry," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
- Petra Posedel v{S}imovi'c & Davor Horvatic & Edward W. Sun, 2021. "Classifying variety of customer's online engagement for churn prediction with mixed-penalty logistic regression," Papers 2105.07671, arXiv.org, revised Jul 2021.
- Ebru Pekel Ozmen & Tuncay Ozcan, 2022. "A novel deep learning model based on convolutional neural networks for employee churn prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 539-550, April.
- Lamrhari, Soumaya & Ghazi, Hamid El & Oubrich, Mourad & Faker, Abdellatif El, 2022. "A social CRM analytic framework for improving customer retention, acquisition, and conversion," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
- Jalal Rabbah & Mohammed Ridouani & Larbi Hassouni, 2022. "A New Churn Prediction Model Based on Deep Insight Features Transformation for Convolution Neural Network Architecture and Stacknet," International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), IGI Global, vol. 17(1), pages 1-18, January.
- Zihayat, Morteza & Ayanso, Anteneh & Davoudi, Heidar & Kargar, Mehdi & Mengesha, Nigussie, 2021. "Leveraging non-respondent data in customer satisfaction modeling," Journal of Business Research, Elsevier, vol. 135(C), pages 112-126.
- Jeremy K. Nguyen & Adam Karg & Abbas Valadkhani & Heath McDonald, 2022. "Predicting individual event attendance with machine learning: a ‘step-forward’ approach," Applied Economics, Taylor & Francis Journals, vol. 54(27), pages 3138-3153, June.
- Thangeda, Rahul & Kumar, Niraj & Majhi, Ritanjali, 2024. "A neural network-based predictive decision model for customer retention in the telecommunication sector," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
- Lewlisa Saha & Hrudaya Kumar Tripathy & Soumya Ranjan Nayak & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review," Sustainability, MDPI, vol. 13(9), pages 1-35, May.
- Sun, Yang, 2021. "Case based models of the relationship between consumer resistance to innovation and customer churn," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
- Hugo Ribeiro & Belém Barbosa & António C. Moreira & Ricardo Rodrigues, 2024. "A closer look at customer experience with bundle telecommunication services and its impacts on satisfaction and switching intention," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(3), pages 668-686, September.
More about this item
Keywords
user churn; attention mechanism; integration model; prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4733-:d:1002045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.