IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4694-d1000001.html
   My bibliography  Save this article

A Novel Space-Time Marching Method for Solving Linear and Nonlinear Transient Problems

Author

Listed:
  • Li-Dan Hong

    (School of Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan)

  • Cheng-Yu Ku

    (School of Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan)

  • Chih-Yu Liu

    (Department of Civil Engineering, National Central University, Taoyuan 320317, Taiwan)

Abstract

In this study, a novel space-time (ST) marching method is presented to solve linear and nonlinear transient flow problems in porous media. The method divides the ST domain into subdomains along the time axis. The solutions are approximated using ST polyharmonic radial polynomial basis functions (RPBFs) in the ST computational domain. In order to proceed along the time axis, we use the numerical solution at the current timespan of the two ST subdomains in the computational domain as the initial conditions of the next stage. The fictitious time integration method (FTIM) is subsequently employed to solve the nonlinear equations. The novelty of the proposed method is attributed to the division of the ST domain along the time axis into subdomains such that the dense and ill-conditioned matrices caused by the excessive number of boundary and interior points and the large ST radial distances can be avoided. The results demonstrate that the proposed method achieves a high accuracy in solving linear and nonlinear transient problems. Compared to the conventional time marching and ST methods, the proposed meshless approach provides more accurate solutions and reduces error accumulation.

Suggested Citation

  • Li-Dan Hong & Cheng-Yu Ku & Chih-Yu Liu, 2022. "A Novel Space-Time Marching Method for Solving Linear and Nonlinear Transient Problems," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4694-:d:1000001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, LingDe, 2019. "A radial basis function (RBF)-finite difference (FD) method for the backward heat conduction problem," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 232-247.
    2. Chih-Yu Liu & Cheng-Yu Ku, 2022. "A Simplified Radial Basis Function Method with Exterior Fictitious Sources for Elliptic Boundary Value Problems," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yu & Xiaochuan Luo & Huaxi (Yulin) Zhang & Qingxin Zhang, 2019. "The Solution of Backward Heat Conduction Problem with Piecewise Linear Heat Transfer Coefficient," Mathematics, MDPI, vol. 7(5), pages 1-17, April.
    2. Zakieh Avazzadeh & Omid Nikan & José A. Tenreiro Machado, 2020. "Solitary Wave Solutions of the Generalized Rosenau-KdV-RLW Equation," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
    3. Xubiao He & Pu Gong, 2020. "A Radial Basis Function-Generated Finite Difference Method to Evaluate Real Estate Index Options," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 999-1019, March.
    4. Yue, Xiaohui & Shao, Xingling & Li, Jie, 2021. "Prescribed chattering reduction control for quadrotors using aperiodic signal updating," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    5. Chih-Yu Liu & Cheng-Yu Ku, 2023. "A Novel ANN-Based Radial Basis Function Collocation Method for Solving Elliptic Boundary Value Problems," Mathematics, MDPI, vol. 11(18), pages 1-19, September.
    6. Oruç, Ömer, 2021. "A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov–Rubenchik equations," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    7. Nikan, O. & Avazzadeh, Z., 2021. "A localisation technique based on radial basis function partition of unity for solving Sobolev equation arising in fluid dynamics," Applied Mathematics and Computation, Elsevier, vol. 401(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4694-:d:1000001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.