IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1622-d812262.html
   My bibliography  Save this article

A Simplified Radial Basis Function Method with Exterior Fictitious Sources for Elliptic Boundary Value Problems

Author

Listed:
  • Chih-Yu Liu

    (Graduate Institute of Applied Geology, National Central University, Taoyuan 320317, Taiwan)

  • Cheng-Yu Ku

    (School of Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan)

Abstract

In this article, we propose a simplified radial basis function (RBF) method with exterior fictitious sources for solving elliptic boundary value problems (BVPs). Three simplified RBFs, including Gaussian, multiquadric (MQ), and inverse multiquadric (IMQ) without the shape parameter, are adopted in this study. With the consideration of many exterior fictitious sources outside the domain, the radial distance of the RBF is always greater than zero, such that we can remove the shape parameter from RBFs. Additionally, simplified Gaussian, MQ, and IMQ RBFs and their derivatives in the governing equation are always smooth and nonsingular. Comparative analysis is conducted for three different collocation types, including conventional uniform centers, randomly fictitious centers, and exterior fictitious sources. Numerical examples of elliptic BVPs in two and three dimensions are carried out. The results demonstrate that the proposed simplified RBFs with exterior fictitious sources can significantly improve the accuracy, especially for the Laplace equation. Furthermore, the proposed simplified RBFs exhibit the simplicity of solving elliptic BVPs without finding the optimum shape parameter.

Suggested Citation

  • Chih-Yu Liu & Cheng-Yu Ku, 2022. "A Simplified Radial Basis Function Method with Exterior Fictitious Sources for Elliptic Boundary Value Problems," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1622-:d:812262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Zhang & F. Z. Wang & E. R. Hou & Imtiaz Ahmad, 2020. "The Conical Radial Basis Function for Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2020, pages 1-7, November.
    2. Xingxing Yue & Buwen Jiang & Xiaoxuan Xue & Chao Yang, 2022. "A Simple, Accurate and Semi-Analytical Meshless Method for Solving Laplace and Helmholtz Equations in Complex Two-Dimensional Geometries," Mathematics, MDPI, vol. 10(5), pages 1-9, March.
    3. Cavoretto, Roberto & De Rossi, Alessandra, 2020. "Adaptive procedures for meshfree RBF unsymmetric and symmetric collocation methods," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Dan Hong & Cheng-Yu Ku & Chih-Yu Liu, 2022. "A Novel Space-Time Marching Method for Solving Linear and Nonlinear Transient Problems," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
    2. Chih-Yu Liu & Cheng-Yu Ku, 2023. "A Novel ANN-Based Radial Basis Function Collocation Method for Solving Elliptic Boundary Value Problems," Mathematics, MDPI, vol. 11(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1622-:d:812262. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.