IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4149-d964836.html
   My bibliography  Save this article

Progressive Fracture Behavior and Acoustic Emission Release of CJBs Affected by Joint Distance Ratio

Author

Listed:
  • Yongyi Wang

    (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China)

  • Bin Gong

    (College of Engineering, Design and Physical Sciences, Brunel University London, London UB8 3PH, UK)

  • Yongjun Zhang

    (School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Xiaoyu Yang

    (School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China)

  • Chun’an Tang

    (State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

The progressive collapse behavior and energy release of columnar jointed basalts (CJBs) can be greatly influenced by different joint distance ratios. By adopting the digital image correlation, a series of heterogeneous CJB models are established. The continuous fracture process and acoustic emissions (AEs) are captured numerically under varying lateral pressures. The load curves under different joint distance ratios and model boundaries are analyzed. Meanwhile, the strength, deformation modulus and AE rule are discussed. The data indicate that under plane strain, the troughs of compression strength appear at the column dip angle β = 30°, 150°, 210° or 330°; the equivalent deformation modulus changes in an elliptical way with β increasing; the compression strength and equivalent deformation modulus are higher than the case between plane stress and plane strain under different joint distance ratios. When β = 30°, the accumulation of AE energy corresponding to the stress peak under plane strain are higher than the case between plane stress and plane strain but becomes lower when β increases to 60°, which implies the critical transformation of the AE energy-related failure precursor affected by column dip angle. These achievements will contribute to the design, construction and support of slopes and tunnels encountering CJBs.

Suggested Citation

  • Yongyi Wang & Bin Gong & Yongjun Zhang & Xiaoyu Yang & Chun’an Tang, 2022. "Progressive Fracture Behavior and Acoustic Emission Release of CJBs Affected by Joint Distance Ratio," Mathematics, MDPI, vol. 10(21), pages 1-30, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4149-:d:964836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baoping Chen & Bin Gong & Shanyong Wang & Chun’an Tang, 2022. "Research on Zonal Disintegration Characteristics and Failure Mechanisms of Deep Tunnel in Jointed Rock Mass with Strength Reduction Method," Mathematics, MDPI, vol. 10(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaofeng Wang & Xin Cai & Jian Zhou & Zhengyang Song & Xiaofeng Li, 2022. "Analytical, Numerical and Big-Data-Based Methods in Deep Rock Mechanics," Mathematics, MDPI, vol. 10(18), pages 1-5, September.
    2. Yuanmin Wang & Yunqiang Wang & Song Luo & Hao Liu & Guansheng Yi & Kang Peng, 2023. "Influence of the Crack Angle on the Deformation and Failure Characteristics of Sandstone under Stepped Cyclic Uniaxial Compression with a Constant Lower Limit," Mathematics, MDPI, vol. 11(9), pages 1-19, May.
    3. Xin Yang & Jiangping Long, 2023. "Reliability Prediction of Tunnel Roof with a Nonlinear Failure Criterion," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    4. Mohammad Javad Bozorgi & Masoud Parham & Omeid Rahmani & Ali Piroozian & Haylay Tsegab Gebretsadik & Syed Muhammad Ibad, 2022. "A Three-Dimensional Finite-Element Model in ABAQUS to Analyze Wellbore Instability and Determine Mud Weight Window," Energies, MDPI, vol. 15(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4149-:d:964836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.