IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i1p128-d716077.html
   My bibliography  Save this article

An Algebraic Approach to Clustering and Classification with Support Vector Machines

Author

Listed:
  • Güvenç Arslan

    (Department of Statistics, Kırıkkale University, Kırıkkale 71450, Turkey)

  • Uğur Madran

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Duygu Soyoğlu

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

Abstract

In this note, we propose a novel classification approach by introducing a new clustering method, which is used as an intermediate step to discover the structure of a data set. The proposed clustering algorithm uses similarities and the concept of a clique to obtain clusters, which can be used with different strategies for classification. This approach also reduces the size of the training data set. In this study, we apply support vector machines (SVMs) after obtaining clusters with the proposed clustering algorithm. The proposed clustering algorithm is applied with different strategies for applying SVMs. The results for several real data sets show that the performance is comparable with the standard SVM while reducing the size of the training data set and also the number of support vectors.

Suggested Citation

  • Güvenç Arslan & Uğur Madran & Duygu Soyoğlu, 2022. "An Algebraic Approach to Clustering and Classification with Support Vector Machines," Mathematics, MDPI, vol. 10(1), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:1:p:128-:d:716077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/1/128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/1/128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenbiao Yang & Kewen Xia & Tiejun Li & Min Xie & Fei Song, 2021. "A Multi-Strategy Marine Predator Algorithm and Its Application in Joint Regularization Semi-Supervised ELM," Mathematics, MDPI, vol. 9(3), pages 1-34, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junya Tang & Kuo-Yi Lin & Li Li, 2022. "Using Domain Adaptation for Incremental SVM Classification of Drift Data," Mathematics, MDPI, vol. 10(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Aosheng & Chen, Yong & Suo, Jinyi & Zhang, Jie, 2024. "Improving teaching-learning-based optimization algorithm with golden-sine and multi-population for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 221(C), pages 94-134.
    2. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Nonlinear Hammerstein System Identification: A Novel Application of Marine Predator Optimization Using the Key Term Separation Technique," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    3. Pan, Jeng-Shyang & Zhang, Zhen & Chu, Shu-Chuan & Zhang, Si-Qi & Wu, Jimmy Ming-Tai, 2024. "A parallel compact Marine Predators Algorithm applied in time series prediction of Backpropagation neural network (BNN) and engineering optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 65-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:1:p:128-:d:716077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.