IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3579-d930698.html
   My bibliography  Save this article

Using Domain Adaptation for Incremental SVM Classification of Drift Data

Author

Listed:
  • Junya Tang

    (School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China)

  • Kuo-Yi Lin

    (School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China)

  • Li Li

    (School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China)

Abstract

A common assumption in machine learning is that training data is complete, and the data distribution is fixed. However, in many practical applications, this assumption does not hold. Incremental learning was proposed to compensate for this problem. Common approaches include retraining models and incremental learning to compensate for the shortage of training data. Retraining models is time-consuming and computationally expensive, while incremental learning can save time and computational costs. However, the concept drift may affect the performance. Two crucial issues should be considered to address concept drift in incremental learning: gaining new knowledge without forgetting previously acquired knowledge and forgetting obsolete information without corrupting valid information. This paper proposes an incremental support vector machine learning approach with domain adaptation, considering both crucial issues. Firstly, a small amount of new data is used to fine-tune the previous model to generate a model that is sensitive to the new data but retains the previous data information by transferring parameters. Secondly, an ensemble and model selection mechanism based on Bayesian theory is proposed to keep the valid information. The computational experiments indicate that the performance of the proposed model improved as new data was acquired. In addition, the influence of the degree of data drift on the algorithm is also explored. A gain in performance on four out of five industrial datasets and four synthetic datasets has been demonstrated over the support vector machine and incremental support vector machine algorithms.

Suggested Citation

  • Junya Tang & Kuo-Yi Lin & Li Li, 2022. "Using Domain Adaptation for Incremental SVM Classification of Drift Data," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3579-:d:930698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3579/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3579/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Güvenç Arslan & Uğur Madran & Duygu Soyoğlu, 2022. "An Algebraic Approach to Clustering and Classification with Support Vector Machines," Mathematics, MDPI, vol. 10(1), pages 1-19, January.
    2. Maria D. Gonzalez-Lima & Carenne C. Ludeña, 2022. "Using Locality-Sensitive Hashing for SVM Classification of Large Data Sets," Mathematics, MDPI, vol. 10(11), pages 1-21, May.
    3. Xin Liu & Bangxin Zhao & Wenqing He, 2020. "Simultaneous Feature Selection and Classification for Data-Adaptive Kernel-Penalized SVM," Mathematics, MDPI, vol. 8(10), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darville, Joshua & Yavuz, Abdurrahman & Runsewe, Temitope & Celik, Nurcin, 2023. "Effective sampling for drift mitigation in machine learning using scenario selection: A microgrid case study," Applied Energy, Elsevier, vol. 341(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3579-:d:930698. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.