IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3616-d932352.html
   My bibliography  Save this article

Numerical Analysis of Building Cooling Using New Passive Downdraught Evaporative Tower Configuration in an Arid Climate

Author

Listed:
  • Mohammad Abdullah Alshenaifi

    (Department of Architectural Engineering, College of Engineering, University of Ha’il, Ha’il 2440, Saudi Arabia)

  • Abdelhakim Mesloub

    (Department of Architectural Engineering, College of Engineering, University of Ha’il, Ha’il 2440, Saudi Arabia)

  • Walid Hassen

    (Laboratory of Metrology and Energy Systems, University of Monastir, Monastir 5000, Tunisia)

  • Mohammed Awad Abuhussain

    (Architectural Engineering Department, College of Engineering, Najran University, Najran 66291, Saudi Arabia)

  • Lioua Kolsi

    (Department of Mechanical Engineering, College of Engineering, University of Ha’il, Ha’il 2440, Saudi Arabia)

Abstract

Building energy consumption in hot arid climates is dominated by air conditioning use. Therefore, using passive cooling methods could reduce this demand, improve resource efficiency, and decrease carbon emissions. In this study, an innovative configuration of a passive downdraught evaporative cooling (PDEC) tower is investigated numerically. The governing equations are solved using the finite element method (FEM), and the effects of inlet velocity (0.5 m·s −1 ≤ u in ≤ 3 m·s −1 ) and temperature (35 °C ≤ T in ≤ 45 °C) on the fluid structure, temperature field, and relative humidity are studied for three cases related to the position of the air outlet. The flow is considered as turbulent, and the building walls and the tower are assumed to be thermally well insulated. The PDEC tower is equipped with two vertical isotropic saturated porous layers. The results revealed that the inlet velocity and temperature play an essential role in the quality of the indoor temperature. In fact, the temperature can be reduced by about 7 degrees, and the relative humidity can be enhanced by 9% for lower inlet velocities.

Suggested Citation

  • Mohammad Abdullah Alshenaifi & Abdelhakim Mesloub & Walid Hassen & Mohammed Awad Abuhussain & Lioua Kolsi, 2022. "Numerical Analysis of Building Cooling Using New Passive Downdraught Evaporative Tower Configuration in an Arid Climate," Mathematics, MDPI, vol. 10(19), pages 1-16, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3616-:d:932352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3616/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    2. Kang, Daeho & Strand, Richard K., 2016. "Significance of parameters affecting the performance of a passive down-draft evaporative cooling (PDEC) tower with a spray system," Applied Energy, Elsevier, vol. 178(C), pages 269-280.
    3. Mesloub, Abdelhakim & Ghosh, Aritra & Touahmia, Mabrouk & Albaqawy, Ghazy Abdullah & Alsolami, Badr M. & Ahriz, Atef, 2022. "Assessment of the overall energy performance of an SPD smart window in a hot desert climate," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    2. Zoltan Varga & Ervin Racz, 2022. "Machine Learning Analysis on the Performance of Dye-Sensitized Solar Cell—Thermoelectric Generator Hybrid System," Energies, MDPI, vol. 15(19), pages 1-18, October.
    3. Awwad, Ahmed & Abdelsamie, Abouelmagd & Mohamed, Mohamed H. & Fatouh, M., 2023. "A new generation of a ceiling air outlet using multi-objective optimization technique," Energy, Elsevier, vol. 278(C).
    4. Haddad, Hassan Z. & Mohamed, Mohamed H. & Shabana, Yasser M. & Elsayed, Khairy, 2023. "Optimization of Savonius wind turbine with additional blades by surrogate model using artificial neural networks," Energy, Elsevier, vol. 270(C).
    5. Piotr Michalak, 2023. "Simulation and Experimental Study on the Use of Ventilation Air for Space Heating of a Room in a Low-Energy Building," Energies, MDPI, vol. 16(8), pages 1-17, April.
    6. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    7. Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
    8. Xuchen Fan & Xiaofeng Lu & Jiping Wang & Zilong Li & Quanhai Wang & Zhonghao Dong & Rongdi Zhang, 2021. "Performance Evaluation of a Maisotsenko Cycle Cooling Tower with Uneven Length of Dry and Wet Channels in Hot and Humid Conditions," Energies, MDPI, vol. 14(24), pages 1-15, December.
    9. Ismail M. Budaiwi & Mohammed Abdul Fasi, 2023. "Assessing the Energy-Saving Potential and Visual Comfort of Electrochromic Smart Windows in Office Buildings: A Case Study in Dhahran, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    10. Wang, Jiayun & Li, Guo & Zhao, Dongliang, 2024. "Multi-objective optimization of an anti-reflection AlN/VO2/AlN thermochromic window for building energy saving," Energy, Elsevier, vol. 288(C).
    11. Atef Ahriz & Abdelhakim Mesloub & Leila Djeffal & Badr M. Alsolami & Aritra Ghosh & Mohamed Hssan Hassan Abdelhafez, 2022. "The Use of Double-Skin Façades to Improve the Energy Consumption of High-Rise Office Buildings in a Mediterranean Climate (Csa)," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    12. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    13. Qingsong Ma & Guangwei Qian & Menghui Yu & Lingrui Li & Xindong Wei, 2024. "Performance of Windcatchers in Improving Indoor Air Quality, Thermal Comfort, and Energy Efficiency: A Review," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    14. Kang, Daeho & Strand, Richard K., 2018. "Performance control of a spray passive down-draft evaporative cooling system," Applied Energy, Elsevier, vol. 222(C), pages 915-931.
    15. Cui, Haijiao & Li, Nianping & Peng, Jinqing & Yin, Rongxin & Li, Jingming & Wu, Zhibin, 2018. "Investigation on the thermal performance of a novel spray tower with upward spraying and downward gas flow," Applied Energy, Elsevier, vol. 231(C), pages 12-21.
    16. Ghosh, Aritra, 2023. "Investigation of vacuum-integrated switchable polymer dispersed liquid crystal glazing for smart window application for less energy-hungry building," Energy, Elsevier, vol. 265(C).
    17. Pu, Jin Huan & Yu, Xiyu & Zhao, Yuewen & Tang, G.H. & Ren, Xingjie & Du, Mu, 2023. "Dynamic aerogel window with switchable solar transmittance and low haze," Energy, Elsevier, vol. 285(C).
    18. Badawy, Youssef E.M. & Nawar, Mohamed A.A. & Attai, Youssef A. & Mohamed, Mohamed H., 2023. "Co-enhancements of several design parameters of an archimedes spiral turbine for hydrokinetic energy conversion," Energy, Elsevier, vol. 268(C).
    19. Andrés Soto & Pedro Martínez & Victor M. Soto & Pedro J. Martínez, 2021. "Analysis of the Performance of a Passive Downdraught Evaporative Cooling System Driven by Solar Chimneys in a Residential Building by Using an Experimentally Validated TRNSYS Model," Energies, MDPI, vol. 14(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3616-:d:932352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.