IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3453-d922239.html
   My bibliography  Save this article

Bayesian Linear Regression and Natural Logarithmic Correction for Digital Image-Based Extraction of Linear and Tridimensional Zoometrics in Dromedary Camels

Author

Listed:
  • Carlos Iglesias Pastrana

    (Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain)

  • Francisco Javier Navas González

    (Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain
    Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Alameda del Obispo, 14004 Córdoba, Spain)

  • Elena Ciani

    (Department of Biosciences, Biotechnologies and Biopharmaceutics, Faculty of Veterinary Sciences, University of Bari ‘Aldo Moro’, 70125 Bari, Italy)

  • María Esperanza Camacho Vallejo

    (Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Alameda del Obispo, 14004 Córdoba, Spain)

  • Juan Vicente Delgado Bermejo

    (Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14014 Córdoba, Spain)

Abstract

This study evaluates a method to accurately, repeatably, and reliably extract camel zoo-metric data (linear and tridimensional) from 2D digital images. Thirty zoometric measures, including linear and tridimensional (perimeters and girths) variables, were collected on-field with a non-elastic measuring tape. A scaled reference was used to extract measurement from images. For girths and perimeters, semimajor and semiminor axes were mathematically estimated with the function of the perimeter of an ellipse. On-field measurements’ direct translation was determined when Cronbach’s alpha (Cα) > 0.600 was met (first round). If not, Bayesian regression corrections were applied using live body weight and the particular digital zoometric measurement as regressors (except for foot perimeter) (second round). Last, if a certain zoometric trait still did not meet such a criterion, its natural logarithm was added (third round). Acceptable method translation consistency was reached for all the measurements after three correction rounds (Cα = 0.654 to 0.997, p < 0.0001). Afterwards, Bayesian regression corrected equations were issued. This research helps to evaluate individual conformation in a reliable contactless manner through the extraction of linear and tridimensional measures from images in dromedary camels. This is the first study to develop and correct the routinely ignored evaluation of tridimensional zoometrics from digital images in animals.

Suggested Citation

  • Carlos Iglesias Pastrana & Francisco Javier Navas González & Elena Ciani & María Esperanza Camacho Vallejo & Juan Vicente Delgado Bermejo, 2022. "Bayesian Linear Regression and Natural Logarithmic Correction for Digital Image-Based Extraction of Linear and Tridimensional Zoometrics in Dromedary Camels," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3453-:d:922239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Analla, M., 1998. "Model validation through the linear regression fit to actual versus predicted values," Agricultural Systems, Elsevier, vol. 57(1), pages 115-119, May.
    2. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    3. Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.
    4. Andrew Gelman & Ben Goodrich & Jonah Gabry & Aki Vehtari, 2019. "R-squared for Bayesian Regression Models," The American Statistician, Taylor & Francis Journals, vol. 73(3), pages 307-309, July.
    5. María Gabriela Pizarro Inostroza & Francisco Javier Navas González & Vincenzo Landi & José Manuel León Jurado & Juan Vicente Delgado Bermejo & Javier Fernández Álvarez & María del Amparo Martínez Mart, 2020. "Software-Automatized Individual Lactation Model Fitting, Peak and Persistence and Bayesian Criteria Comparison for Milk Yield Genetic Studies in Murciano-Granadina Goats," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    2. Righi, Simone & Pancotto, Francesca & Giardini, Francesca, 2022. "Cooperation, fairness and civic capital after an earthquake: Evidence from two Italian regions," SocArXiv n49hv_v1, Center for Open Science.
    3. Anna Sokolova, 2023. "Marginal Propensity to Consume and Unemployment: a Meta-analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 813-846, December.
    4. Hasan, Iftekhar & Horvath, Roman & Mares, Jan, 2020. "Finance and wealth inequality," Journal of International Money and Finance, Elsevier, vol. 108(C).
    5. Galharret, Jean-Michel & Philippe, Anne, 2023. "Bayesian analysis for mediation and moderation using g−priors," Econometrics and Statistics, Elsevier, vol. 27(C), pages 161-172.
    6. Philipp Piribauer & Jesús Crespo Cuaresma, 2016. "Bayesian Variable Selection in Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(4), pages 457-479, October.
    7. Ley, Eduardo & Steel, Mark F. J., 2007. "On the effect of prior assumptions in Bayesian model averaging with applications to growth regression," Policy Research Working Paper Series 4238, The World Bank.
    8. Forte, Anabel & Peiró-Palomino, Jesús & Tortosa-Ausina, Emili, 2015. "Does social capital matter for European regional growth?," European Economic Review, Elsevier, vol. 77(C), pages 47-64.
    9. Aart Kraay & Norikazu Tawara, 2013. "Can specific policy indicators identify reform priorities?," Journal of Economic Growth, Springer, vol. 18(3), pages 253-283, September.
    10. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    11. Robert Richardson, 2022. "Spatial Generalized Linear Models with Non-Gaussian Translation Processes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 4-21, March.
    12. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    13. repec:zbw:bofrdp:urn:nbn:fi:bof-201508211364 is not listed on IDEAS
    14. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    15. Harkness, Caroline & Areal, Francisco J. & Semenov, Mikhail A. & Senapati, Nimai & Shield, Ian F. & Bishop, Jacob, 2023. "Towards stability of food production and farm income in a variable climate," Ecological Economics, Elsevier, vol. 204(PA).
    16. Fabrice Murtin & Thomas Laurent & Geoff Barnard & Dean Janse van Rensburg & Vijay Reddy & George Frempong & Lolita Winnaar, 2015. "Policy Determinants of School Outcomes under Model Uncertainty: Evidence from South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 83(3), pages 317-334, September.
    17. Malesios, C & Demiris, N & Kalogeropoulos, K & Ntzoufras, I, 2017. "Bayesian epidemic models for spatially aggregated count data," LSE Research Online Documents on Economics 77939, London School of Economics and Political Science, LSE Library.
    18. Xiaoquan Wen, 2014. "Bayesian model selection in complex linear systems, as illustrated in genetic association studies," Biometrics, The International Biometric Society, vol. 70(1), pages 73-83, March.
    19. Njindan Iyke, Bernard, 2015. "Macro Determinants of the Real Exchange Rate in a Small Open Small Island Economy: Evidence from Mauritius via BMA," MPRA Paper 68968, University Library of Munich, Germany.
    20. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    21. Valen E. Johnson & David Rossell, 2010. "On the use of non‐local prior densities in Bayesian hypothesis tests," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 143-170, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3453-:d:922239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.