IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p2830-d883924.html
   My bibliography  Save this article

Dynamical Analysis of a Stochastic Cholera Epidemic Model

Author

Listed:
  • Xueyong Zhou

    (School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China)

Abstract

Environmental disturbances have a strong impact on cholera transmission. Stochastic differential equations are an effective tool for characterizing environmental perturbations. In this paper, a stochastic infectious disease model for cholera is established and investigated. The dynamics of the stochastic cholera model are discussed. Firstly, the existence and uniqueness of the positive solution are proven. Then, the asymptotical stability of the disease-free equilibrium of the system is investigated. Furthermore, the asymptotical stability of the endemic equilibrium of the deterministic system corresponding to the stochastic system is obtained. Then, the theoretical results are verified by some numerical simulations. Finally, the optimal problem is considered as the theoretical basis for the control of cholera. Both theoretical and numerical results indicate that the random perturbations may make the model more realistic, which provides theoretical assessment for the control of cholera transmission.

Suggested Citation

  • Xueyong Zhou, 2022. "Dynamical Analysis of a Stochastic Cholera Epidemic Model," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2830-:d:883924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/2830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/2830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing'an Cui & Zhanmin Wu & Xueyong Zhou, 2014. "Mathematical Analysis of a Cholera Model with Vaccination," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-16, February.
    2. Zhou, Xueyong & Shi, Xiangyun & Wei, Ming, 2022. "Dynamical behavior and optimal control of a stochastic mathematical model for cholera," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Liao, Shu & Wang, Jin, 2012. "Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 966-977.
    4. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xueyong & Shi, Xiangyun & Wei, Ming, 2022. "Dynamical behavior and optimal control of a stochastic mathematical model for cholera," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. El Attouga, Sanae & Bouggar, Driss & El Fatini, Mohamed & Hilbert, Astrid & Pettersson, Roger, 2023. "Lévy noise with infinite activity and the impact on the dynamic of an SIRS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    3. Moualkia, Seyfeddine, 2023. "Mathematical analysis of new variant Omicron model driven by Lévy noise and with variable-order fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Li, Xiao-Ping & Din, Anwarud & Zeb, Anwar & Kumar, Sunil & Saeed, Tareq, 2022. "The impact of Lévy noise on a stochastic and fractal-fractional Atangana–Baleanu order hepatitis B model under real statistical data," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    5. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Khatun, Mst Sebi & Mahato, Kiriti Bhusan & Das, Pritha, 2024. "Dynamics of an SuSaV IR epidemic model with stochastic optimal control and awareness programs," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    7. Pengcheng Shao & Stanford Shateyi, 2021. "Stability Analysis of SEIRS Epidemic Model with Nonlinear Incidence Rate Function," Mathematics, MDPI, vol. 9(21), pages 1-15, October.
    8. Medda, Rakesh & Tiwari, Pankaj Kumar & Pal, Samares, 2024. "Impacts of planktonic components on the dynamics of cholera epidemic: Implications from a mathematical model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 505-526.
    9. Shenxing Li & Wenhe Li, 2024. "Dynamical Behaviors of a Stochastic Susceptible-Infected-Treated-Recovered-Susceptible Cholera Model with Ornstein-Uhlenbeck Process," Mathematics, MDPI, vol. 12(14), pages 1-20, July.
    10. Zhang, Ge & Li, Zhiming & Din, Anwarud, 2022. "A stochastic SIQR epidemic model with Lévy jumps and three-time delays," Applied Mathematics and Computation, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2830-:d:883924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.