IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2814-d883181.html
   My bibliography  Save this article

Study on Dynamic Characteristics of a Rotating Sandwich Porous Pre-Twist Blade with a Setting Angle Reinforced by Graphene Nanoplatelets

Author

Listed:
  • Jiapei Peng

    (Key Laboratory of Structural Dynamics of Liaoning Province, School of Sciences, Northeastern University, Shenyang 110819, China)

  • Lefa Zhao

    (Department of General Education, Shenyang Sport University, Shenyang 110115, China)

  • Tianyu Zhao

    (Key Laboratory of Structural Dynamics of Liaoning Province, School of Sciences, Northeastern University, Shenyang 110819, China)

Abstract

Lightweight blades with high strength are urgently needed in practical rotor engineering. Sandwich structures with porous core and reinforced surfaces are commonly applied to achieve these mechanical performances. Moreover, blades with large aspect ratios are established by the elastic plate models in theory. This paper studies the vibration of a rotating sandwich pre-twist plate with a setting angle reinforced by graphene nanoplatelets (GPLs). Its core is made of foam metal, and GPLs are added into the surface layers. Supposing that nanofillers are perfectly connected with matrix material, the effective mechanical parameters of the surface layers are calculated by the mixing law and the Halpin–Tsai model, while those of the core layers are determined by the open-cell scheme. The governing equation of the rotating plate is derived by employing the Hamilton principle. By comparing with the finite element method obtained by ANSYS, the present model and vibration analysis are verified. The material and structural parameters of the blade, including graphene nanoplatelet (GPL) weight faction, GPL distribution pattern, porosity coefficient, porosity distribution pattern, length-to-thickness ratio, length-to-width ratio, setting angle and pre-twist angle of the plate are discussed in detail. The finds provide important inspiration in the designing of a rotating sandwich blade.

Suggested Citation

  • Jiapei Peng & Lefa Zhao & Tianyu Zhao, 2022. "Study on Dynamic Characteristics of a Rotating Sandwich Porous Pre-Twist Blade with a Setting Angle Reinforced by Graphene Nanoplatelets," Mathematics, MDPI, vol. 10(15), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2814-:d:883181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Shuo Zhang & Wei Zhang, 2023. "Applied Computing and Artificial Intelligence," Mathematics, MDPI, vol. 11(10), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nannan Xu & Xinze Cui & Xin Wang & Wei Zhang & Tianyu Zhao, 2022. "An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    2. Yi Lyu & Qichen Zhang & Zhenfei Wen & Aiguo Chen, 2022. "Remaining Useful Life Prediction Based on Multi-Representation Domain Adaptation," Mathematics, MDPI, vol. 10(24), pages 1-18, December.
    3. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Zhang, Jiusi & Tian, Jilun & Yan, Pengfei & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    8. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2021. "Learning the health index of complex systems using dynamic conditional variational autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Lefa Zhao & Yafei Zhu & Tianyu Zhao, 2022. "Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    10. Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Xia, Jun & Feng, Yunwen & Teng, Da & Chen, Junyu & Song, Zhicen, 2022. "Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    14. Chen, Chong & Liu, Ying & Sun, Xianfang & Cairano-Gilfedder, Carla Di & Titmus, Scott, 2021. "An integrated deep learning-based approach for automobile maintenance prediction with GIS data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Liu, Junqiang & Pan, Chunlu & Lei, Fan & Hu, Dongbin & Zuo, Hongfu, 2021. "Fault prediction of bearings based on LSTM and statistical process analysis," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    16. Xin Wang & Seyed Mehdi Abtahi & Mahmood Chahari & Tianyu Zhao, 2022. "An Adaptive Neuro-Fuzzy Model for Attitude Estimation and Control of a 3 DOF System," Mathematics, MDPI, vol. 10(6), pages 1-16, March.
    17. Dong, Shaojiang & Xiao, Jiafeng & Hu, Xiaolin & Fang, Nengwei & Liu, Lanhui & Yao, Jinbao, 2023. "Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Li, Tianfu & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Xiang, Sheng & Li, Penghua & Huang, Yi & Luo, Jun & Qin, Yi, 2024. "Single gated RNN with differential weighted information storage mechanism and its application to machine RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2814-:d:883181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.