IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2651-d874300.html
   My bibliography  Save this article

Cognitive Trait Model: Measurement Model for Mastery Level and Progression of Learning

Author

Listed:
  • Jaehwa Choi

    (Department of Educational Leadership, Graduate School of Education and Human Development, The George Washington University, Washington, DC 20010, USA)

Abstract

This paper seeks to establish a framework which operationalizes cognitive traits as a portion of the predefined mastery level, the highest level expected to successfully perform all of the relevant tasks of the target trait. This perspective allows us to use and interpret the cognitive trait levels in relative quantities (e.g., %s) of the mastery level instead of relative standings (i.e., rankings) on an unbounded continuum. To facilitate the proposed perspective, this paper presents an analytical framework that has support on the [0, 1] trait continuum with truncated logistic link functions. The framework provides a solution to cope with the chronic question of “relative standings or magnitudes of learning outcome?” in measuring cognitive traits. The proposed framework is articulated relative to the traditional models and is illustrated with both simulated and empirical datasets within the Bayesian framework, estimated with the Markov chain Monte Carlo method.

Suggested Citation

  • Jaehwa Choi, 2022. "Cognitive Trait Model: Measurement Model for Mastery Level and Progression of Learning," Mathematics, MDPI, vol. 10(15), pages 1-21, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2651-:d:874300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    2. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    2. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    3. Heleno Bolfarine & Jorge Luis Bazan, 2010. "Bayesian Estimation of the Logistic Positive Exponent IRT Model," Journal of Educational and Behavioral Statistics, , vol. 35(6), pages 693-713, December.
    4. Azevedo, Caio L.N. & Andrade, Dalton F. & Fox, Jean-Paul, 2012. "A Bayesian generalized multiple group IRT model with model-fit assessment tools," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4399-4412.
    5. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    6. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.
    7. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    8. Li C. Liu & Donald Hedeker, 2006. "A Mixed-Effects Regression Model for Longitudinal Multivariate Ordinal Data," Biometrics, The International Biometric Society, vol. 62(1), pages 261-268, March.
    9. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
    10. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    11. Jiwei Zhang & Zhaoyuan Zhang & Jian Tao, 2021. "A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data," Computational Statistics, Springer, vol. 36(4), pages 2643-2669, December.
    12. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    13. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    14. Carolina Navarro & Luis Ayala & José Labeaga, 2010. "Housing deprivation and health status: evidence from Spain," Empirical Economics, Springer, vol. 38(3), pages 555-582, June.
    15. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    16. Alexander Robitzsch, 2024. "Bias-Reduced Haebara and Stocking–Lord Linking," J, MDPI, vol. 7(3), pages 1-12, September.
    17. Sun-Joo Cho & Allan S. Cohen, 2010. "A Multilevel Mixture IRT Model With an Application to DIF," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 336-370, June.
    18. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    19. Cafarelli Ryan & Rigdon Christopher J. & Rigdon Steven E., 2012. "Models for Third Down Conversion in the National Football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(3), pages 1-26, October.
    20. Sijia Huang & Li Cai, 2024. "Cross-Classified Item Response Theory Modeling With an Application to Student Evaluation of Teaching," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 311-341, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2651-:d:874300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.