IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2226-d847669.html
   My bibliography  Save this article

A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models

Author

Listed:
  • Maximilian Roth

    (Institute for Mechatronic Systems, Technical University of Darmstadt, 64289 Darmstadt, Germany)

  • Georg Franke

    (Institute for Mechatronic Systems, Technical University of Darmstadt, 64289 Darmstadt, Germany)

  • Stephan Rinderknecht

    (Institute for Mechatronic Systems, Technical University of Darmstadt, 64289 Darmstadt, Germany)

Abstract

As decentralized energy supply units, microgrids can make a decisive contribution to achieving climate targets. In this context, it is particularly important to determine the optimal size of the energy components contained in the microgrids and their optimal operating schedule. Hence, mathematical optimization methods are often used in association with such tasks. In particular, mixed-integer linear programming (MILP) has proven to be a useful tool. Due to the versatility of the different energetic components (e.g., storages, solar modules) and their special technical characteristics, linear relationships can often only inadequately describe the real processes. In order to take advantage of linear solution techniques but at the same time better represent these real-world processes, accurate and efficient approximation techniques need to be applied in system modeling. In particular, nonlinear-bivariate functions represent a major challenge, which is why this paper derives and implements a method that addresses this issue. The advantage of this method is that any bivariate mixed-integer nonlinear programming (MINLP) formulation can be transformed into a MILP formulation using this comprehensive method. For a performance comparison, a mixed-integer quadratic constrained programming (MIQCP) model—as an MINLP special case—is applied and transformed into a MILP, and the solution of the transformed problem is compared with the one of the MIQCP. Since there are good off-the-shelf solvers for MIQCP problems available, the comparison is conservative. The results for an exemplary microgrid sizing task show that the method delivers a strong performance, both in terms of approximation error (0.08%) and computation time. The method and its implementation can serve as a general user-tool but also as a basis for further methodological developments and research.

Suggested Citation

  • Maximilian Roth & Georg Franke & Stephan Rinderknecht, 2022. "A Comprehensive Approach for an Approximative Integration of Nonlinear-Bivariate Functions in Mixed-Integer Linear Programming Models," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2226-:d:847669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    2. Bolívar Jaramillo, Lucas & Weidlich, Anke, 2016. "Optimal microgrid scheduling with peak load reduction involving an electrolyzer and flexible loads," Applied Energy, Elsevier, vol. 169(C), pages 857-865.
    3. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    4. Warren P. Adams & Hanif D. Sherali, 1990. "Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems," Operations Research, INFORMS, vol. 38(2), pages 217-226, April.
    5. Jochem, Patrick & Schönfelder, Martin & Fichtner, Wolf, 2015. "An efficient two-stage algorithm for decentralized scheduling of micro-CHP units," European Journal of Operational Research, Elsevier, vol. 245(3), pages 862-874.
    6. Steffen Rebennack & Josef Kallrath, 2015. "Continuous Piecewise Linear Delta-Approximations for Bivariate and Multivariate Functions," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 102-117, October.
    7. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Árpád Bűrmen & Tadej Tuma, 2022. "Preface to the Special Issue on “Optimization Theory and Applications”," Mathematics, MDPI, vol. 10(24), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    3. Li, Bei & Roche, Robin & Paire, Damien & Miraoui, Abdellatif, 2017. "Sizing of a stand-alone microgrid considering electric power, cooling/heating, hydrogen loads and hydrogen storage degradation," Applied Energy, Elsevier, vol. 205(C), pages 1244-1259.
    4. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2019. "A rolling-horizon optimization algorithm for the long term operational scheduling of cogeneration systems," Energy, Elsevier, vol. 184(C), pages 73-90.
    5. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    6. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    7. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    8. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    9. Pérez-Iribarren, E. & González-Pino, I. & Azkorra-Larrinaga, Z. & Gómez-Arriarán, I., 2020. "Optimal design and operation of thermal energy storage systems in micro-cogeneration plants," Applied Energy, Elsevier, vol. 265(C).
    10. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    11. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    12. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    13. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    14. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    15. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    16. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    17. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    18. Xiaofeng Liu & Shijun Wang & Jiawen Sun, 2018. "Energy Management for Community Energy Network with CHP Based on Cooperative Game," Energies, MDPI, vol. 11(5), pages 1-18, April.
    19. Goldsworthy, M. & Moore, T. & Peristy, M. & Grimeland, M., 2022. "Cloud-based model-predictive-control of a battery storage system at a commercial site," Applied Energy, Elsevier, vol. 327(C).
    20. Jinyeong Lee & Kyungcheol Shin & Young-Min Wi, 2024. "Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea," Sustainability, MDPI, vol. 16(13), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2226-:d:847669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.