IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2205-d846811.html
   My bibliography  Save this article

An Artificial Bee Colony Algorithm for Static and Dynamic Capacitated Arc Routing Problems

Author

Listed:
  • Zsuzsanna Nagy

    (Department of Electrical Engineering and Information Systems, Faculty of Information Technology, University of Pannonia, Egyetem St. 10, 8200 Veszprém, Hungary)

  • Ágnes Werner-Stark

    (Department of Electrical Engineering and Information Systems, Faculty of Information Technology, University of Pannonia, Egyetem St. 10, 8200 Veszprém, Hungary)

  • Tibor Dulai

    (Department of Electrical Engineering and Information Systems, Faculty of Information Technology, University of Pannonia, Egyetem St. 10, 8200 Veszprém, Hungary)

Abstract

The Capacitated Arc Routing Problem (CARP) is a combinatorial optimization problem, which requires the identification of such route plans on a given graph to a number of vehicles that generates the least total cost. The Dynamic CARP (DCARP) is a variation of the CARP that considers dynamic changes in the problem. The Artificial Bee Colony (ABC) algorithm is an evolutionary optimization algorithm that was proven to be able to provide better performance than many other evolutionary algorithms, but it was not used for the CARP before. For this reason, in this study, an ABC algorithm for the CARP (CARP-ABC) was developed along with a new move operator for the CARP, the sub-route plan operator. The CARP-ABC algorithm was tested both as a CARP and a DCARP solver, then its performance was compared with other existing algorithms. The results showed that it excels in finding a relatively good quality solution in a short amount of time, which makes it a competitive solution. The efficiency of the sub-route plan operator was also tested and the results showed that it is more likely to find better solutions than other operators.

Suggested Citation

  • Zsuzsanna Nagy & Ágnes Werner-Stark & Tibor Dulai, 2022. "An Artificial Bee Colony Algorithm for Static and Dynamic Capacitated Arc Routing Problems," Mathematics, MDPI, vol. 10(13), pages 1-38, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2205-:d:846811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beullens, Patrick & Muyldermans, Luc & Cattrysse, Dirk & Van Oudheusden, Dirk, 2003. "A guided local search heuristic for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 147(3), pages 629-643, June.
    2. Santos, Luís & Coutinho-Rodrigues, João & Current, John R., 2010. "An improved ant colony optimization based algorithm for the capacitated arc routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 246-266, February.
    3. Chen, Yuning & Hao, Jin-Kao & Glover, Fred, 2016. "A hybrid metaheuristic approach for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 25-39.
    4. Alain Hertz & Gilbert Laporte & Michel Mittaz, 2000. "A Tabu Search Heuristic for the Capacitated arc Routing Problem," Operations Research, INFORMS, vol. 48(1), pages 129-135, February.
    5. Ulusoy, Gunduz, 1985. "The fleet size and mix problem for capacitated arc routing," European Journal of Operational Research, Elsevier, vol. 22(3), pages 329-337, December.
    6. Philippe Lacomme & Christian Prins & Wahiba Ramdane-Cherif, 2004. "Competitive Memetic Algorithms for Arc Routing Problems," Annals of Operations Research, Springer, vol. 131(1), pages 159-185, October.
    7. Tunchan Cura, 2013. "An artificial bee colony approach for the undirected capacitated arc routing problem with profits," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 17(4), pages 483-508.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Ma & Minghan Xin & Yi-Jia Wang & Yanjiao Zhang, 2022. "Dynamic Scheduling Strategy for Shared Agricultural Machinery for On-Demand Farming Services," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
    2. Zsolt Tibor Kosztyán & Zoltán Kovács, 2023. "Preface to the Special Issue on “Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling”," Mathematics, MDPI, vol. 11(1), pages 1-3, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yuning & Hao, Jin-Kao, 2018. "Two phased hybrid local search for the periodic capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 55-65.
    2. Thibaut Vidal, 2017. "Node, Edge, Arc Routing and Turn Penalties: Multiple Problems—One Neighborhood Extension," Operations Research, INFORMS, vol. 65(4), pages 992-1010, August.
    3. Chen, Yuning & Hao, Jin-Kao & Glover, Fred, 2016. "A hybrid metaheuristic approach for the capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 253(1), pages 25-39.
    4. Abdelkader Sbihi & Richard Eglese, 2010. "Combinatorial optimization and Green Logistics," Annals of Operations Research, Springer, vol. 175(1), pages 159-175, March.
    5. Jesica Armas & Peter Keenan & Angel A. Juan & Seán McGarraghy, 2019. "Solving large-scale time capacitated arc routing problems: from real-time heuristics to metaheuristics," Annals of Operations Research, Springer, vol. 273(1), pages 135-162, February.
    6. Yu, Mingzhu & Jin, Xin & Zhang, Zizhen & Qin, Hu & Lai, Qidong, 2019. "The split-delivery mixed capacitated arc-routing problem: Applications and a forest-based tabu search approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 141-162.
    7. Santos, Luís & Coutinho-Rodrigues, João & Current, John R., 2010. "An improved ant colony optimization based algorithm for the capacitated arc routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 246-266, February.
    8. Porumbel, Daniel & Goncalves, Gilles & Allaoui, Hamid & Hsu, Tienté, 2017. "Iterated Local Search and Column Generation to solve Arc-Routing as a permutation set-covering problem," European Journal of Operational Research, Elsevier, vol. 256(2), pages 349-367.
    9. Chu, Feng & Labadi, Nacima & Prins, Christian, 2006. "A Scatter Search for the periodic capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 586-605, March.
    10. Fung, Richard Y.K. & Liu, Ran & Jiang, Zhibin, 2013. "A memetic algorithm for the open capacitated arc routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 53-67.
    11. Claudia Bode & Stefan Irnich, 2012. "Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing Problem," Operations Research, INFORMS, vol. 60(5), pages 1167-1182, October.
    12. Li, Jiliu & Qin, Hu & Shen, Huaxiao & Tsui, Kwok Leung, 2019. "The unilateral transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 1-29.
    13. Gilbert Laporte & Roberto Musmanno & Francesca Vocaturo, 2010. "An Adaptive Large Neighbourhood Search Heuristic for the Capacitated Arc-Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 44(1), pages 125-135, February.
    14. Hashemi Doulabi, Seyed Hossein & Seifi, Abbas, 2013. "Lower and upper bounds for location-arc routing problems with vehicle capacity constraints," European Journal of Operational Research, Elsevier, vol. 224(1), pages 189-208.
    15. Enrico Bartolini & Jean-François Cordeau & Gilbert Laporte, 2013. "An Exact Algorithm for the Capacitated Arc Routing Problem with Deadheading Demand," Operations Research, INFORMS, vol. 61(2), pages 315-327, April.
    16. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    17. Claudia Bode & Stefan Irnich, 2012. "In-Depth Analysis of Pricing Problem Relaxations for the Capacitated Arc-Routing Problem," Working Papers 1212, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    18. Diego Pecin & Eduardo Uchoa, 2019. "Comparative Analysis of Capacitated Arc Routing Formulations for Designing a New Branch-Cut-and-Price Algorithm," Transportation Science, INFORMS, vol. 53(6), pages 1673-1694, November.
    19. Zhou, Yangming & Qu, Chenhui & Wu, Qinghua & Kou, Yawen & Jiang, Zhibin & Zhou, MengChu, 2024. "A bilevel hybrid iterated search approach to soft-clustered capacitated arc routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    20. Lacomme, Philippe & Prins, Christian & Ramdane-Cherif, Wahiba, 2005. "Evolutionary algorithms for periodic arc routing problems," European Journal of Operational Research, Elsevier, vol. 165(2), pages 535-553, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2205-:d:846811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.