IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p2009-d836142.html
   My bibliography  Save this article

An Adaptive ANP & ELECTRE IS-Based MCDM Model Using Quantitative Variables

Author

Listed:
  • Antonio J. Sánchez-Garrido

    (Department of Construction Engineering, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Ignacio J. Navarro

    (Department of Construction Engineering, Universitat Politècnica de València, 46022 Valencia, Spain)

  • José García

    (School of Construction and Transportation Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Víctor Yepes

    (Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

The analytic network process (ANP) is a discrete multi-criteria decision-making (MCDM) method conceived as a generalization of the traditional analytic hierarchical process (AHP) to address its limitations. ANP allows the incorporation of interdependence and feedback relationships between the criteria and alternatives that make up the system. This implies much more complexity and intervention time, which reduces the expert’s ability to make accurate and consistent judgments. The present paper takes advantage of the usefulness of this methodology by formulating the model for exclusively quantitative variables, simplifying the decision problem by resulting in fewer paired comparisons. Seven sustainability-related criteria are used to determine, among four design alternatives for a building structure, which is the most sustainable over its life cycle. The results reveal that the number of questions required by the conventional AHP is reduced by 92%. The weights obtained between the AHP and ANP groups show significant variations of up to 71% in the relative standard deviation of some criteria. This sensitivity to subjectivity has been implemented by combining the ANP-ELECTRE IS methods, allowing the expert to reflect the view of the decision problem with greater flexibility and accuracy. The sensitivity of the results on different methods has been analyzed.

Suggested Citation

  • Antonio J. Sánchez-Garrido & Ignacio J. Navarro & José García & Víctor Yepes, 2022. "An Adaptive ANP & ELECTRE IS-Based MCDM Model Using Quantitative Variables," Mathematics, MDPI, vol. 10(12), pages 1-24, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2009-:d:836142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/2009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/2009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vicent Penadés-Plà & Tatiana García-Segura & José V. Martí & Víctor Yepes, 2016. "A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    2. Ignacio J. Navarro & José V. Martí & Víctor Yepes, 2021. "Neutrosophic Completion Technique for Incomplete Higher-Order AHP Comparison Matrices," Mathematics, MDPI, vol. 9(5), pages 1-19, February.
    3. Thomas L. Saaty, 1986. "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 32(7), pages 841-855, July.
    4. Shapiro, Arnold F. & Koissi, Marie-Claire, 2017. "Fuzzy logic modifications of the Analytic Hierarchy Process," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 189-202.
    5. Jicang Xu & Linlin Li & Ming Ren, 2022. "A Hybrid ANP Method for Evaluation of Government Data Sustainability," Sustainability, MDPI, vol. 14(2), pages 1-32, January.
    6. Sébastien Bigaret & Richard E. Hodgett & Patrick Meyer & Tatiana Mironova & Alexandru-Liviu Olteanu, 2017. "Supporting the multi-criteria decision aiding process: R and the MCDA package," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 169-194, November.
    7. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    8. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    9. Alexis Tsoukiàs, 2007. "On the concept of decision aiding process: an operational perspective," Annals of Operations Research, Springer, vol. 154(1), pages 3-27, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    2. Junnan Wu & Xin Liu & Dianqi Pan & Yichen Zhang & Jiquan Zhang & Kai Ke, 2023. "Research on Safety Evaluation of Municipal Sewage Treatment Plant Based on Improved Best-Worst Method and Fuzzy Comprehensive Method," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    3. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    4. Pushparenu Bhattacharjee & Syed Abou Iltaf Hussain & V. Dey & U. K. Mandal, 2023. "Failure mode and effects analysis for submersible pump component using proportionate risk assessment model: a case study in the power plant of Agartala," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1778-1798, October.
    5. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    6. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    7. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    8. Ghadimi, Pezhman & Donnelly, Oisin & Sar, Kubra & Wang, Chao & Azadnia, Amir Hossein, 2022. "The successful implementation of industry 4.0 in manufacturing: An analysis and prioritization of risks in Irish industry," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    9. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.
    10. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    11. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    12. Corrente, Salvatore & Greco, Salvatore & Rezaei, Jafar, 2024. "Better decisions with less cognitive load: The Parsimonious BWM," Omega, Elsevier, vol. 126(C).
    13. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    14. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    15. Mei, Mei & Chen, Zhihua, 2021. "Evaluation and selection of sustainable hydrogen production technology with hybrid uncertain sustainability indicators based on rough-fuzzy BWM-DEA," Renewable Energy, Elsevier, vol. 165(P1), pages 716-730.
    16. Javid Nafari & Alireza Arab & Sina Ghaffari, 2017. "Through the Looking Glass: Analysis of Factors Influencing Iranian Student’s Study Abroad Motivations and Destination Choice," SAGE Open, , vol. 7(2), pages 21582440177, June.
    17. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    18. Omidipoor, Morteza & Jelokhani-Niaraki, Mohammadreza & Moeinmehr, Athena & Sadeghi-Niaraki, Abolghasem & Choi, Soo-Mi, 2019. "A GIS-based decision support system for facilitating participatory urban renewal process," Land Use Policy, Elsevier, vol. 88(C).
    19. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    20. Negin Salimi & Jafar Rezaei, 2016. "Measuring efficiency of university-industry Ph.D. projects using best worst method," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1911-1938, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2009-:d:836142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.