IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1766-d821070.html
   My bibliography  Save this article

State and Control Path-Dependent Stochastic Zero-Sum Differential Games: Viscosity Solutions of Path-Dependent Hamilton–Jacobi–Isaacs Equations

Author

Listed:
  • Jun Moon

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

In this paper, we consider the two-player state and control path-dependent stochastic zero-sum differential game. In our problem setup, the state process, which is controlled by the players, is dependent on (current and past) paths of state and control processes of the players. Furthermore, the running cost of the objective functional depends on both state and control paths of the players. We use the notion of non-anticipative strategies to define lower and upper value functionals of the game, where unlike the existing literature, these value functions are dependent on the initial states and control paths of the players. In the first main result of this paper, we prove that the (lower and upper) value functionals satisfy the dynamic programming principle (DPP), for which unlike the existing literature, the Skorohod metric is necessary to maintain the separability of càdlàg (state and control) spaces. We introduce the lower and upper Hamilton–Jacobi–Isaacs (HJI) equations from the DPP, which correspond to the state and control path-dependent nonlinear second-order partial differential equations. In the second main result of this paper, we show that by using the functional Itô calculus, the lower and upper value functionals are viscosity solutions of (lower and upper) state and control path-dependent HJI equations, where the notion of viscosity solutions is defined on a compact κ -Hölder space to use several important estimates and to guarantee the existence of minimum and maximum points between the (lower and upper) value functionals and the test functions. Based on these two main results, we also show that the Isaacs condition and the uniqueness of viscosity solutions imply the existence of the game value. Finally, we prove the uniqueness of classical solutions for the (state path-dependent) HJI equations in the state path-dependent case, where its proof requires establishing an equivalent classical solution structure as well as an appropriate contradiction argument.

Suggested Citation

  • Jun Moon, 2022. "State and Control Path-Dependent Stochastic Zero-Sum Differential Games: Viscosity Solutions of Path-Dependent Hamilton–Jacobi–Isaacs Equations," Mathematics, MDPI, vol. 10(10), pages 1-32, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1766-:d:821070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. El-Karoui, N. & Hamadène, S., 2003. "BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 145-169, September.
    2. Ren, Zhenjie & Tan, Xiaolu, 2017. "On the convergence of monotone schemes for path-dependent PDEs," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1738-1762.
    3. P. Cardaliaguet & M. Quincampoix, 2008. "Deterministic Differential Games Under Probability Knowledge Of Initial Condition," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-16.
    4. Peter Imkeller & Anthony Réveillac & Jianing Zhang, 2011. "SOLVABILITY AND NUMERICAL SIMULATION OF BSDEs RELATED TO BSPDEs WITH APPLICATIONS TO UTILITY MAXIMIZATION," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 635-667.
    5. R. Buckdahn & P. Cardaliaguet & M. Quincampoix, 2011. "Some Recent Aspects of Differential Game Theory," Dynamic Games and Applications, Springer, vol. 1(1), pages 74-114, March.
    6. Harald Bauer & Ulrich Rieder, 2005. "Stochastic control problems with delay," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(3), pages 411-427, December.
    7. repec:dau:papers:123456789/6046 is not listed on IDEAS
    8. Yuri F. Saporito & Zhaoyu Zhang, 2020. "PDGM: a Neural Network Approach to Solve Path-Dependent Partial Differential Equations," Papers 2003.02035, arXiv.org, revised Apr 2020.
    9. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaochi Wu, 2022. "Existence of value for a differential game with asymmetric information and signal revealing," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 213-247, March.
    2. Xiaochi Wu, 2021. "Differential Games with Incomplete Information and with Signal Revealing: The Symmetric Case," Dynamic Games and Applications, Springer, vol. 11(4), pages 863-891, December.
    3. Rainer Buckdahn & Juan Li & Marc Quincampoix, 2013. "Value function of differential games without Isaacs conditions. An approach with nonanticipative mixed strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(4), pages 989-1020, November.
    4. Chloe Jimenez & Marc Quincampoix & Yuhong Xu, 2016. "Differential Games with Incomplete Information on a Continuum of Initial Positions and without Isaacs Condition," Dynamic Games and Applications, Springer, vol. 6(1), pages 82-96, March.
    5. Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
    6. Thibaut Mastrolia & Dylan Possamaï, 2018. "Moral Hazard Under Ambiguity," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 452-500, November.
    7. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    8. Yurii Averboukh, 2019. "Krasovskii–Subbotin Approach to Mean Field Type Differential Games," Dynamic Games and Applications, Springer, vol. 9(3), pages 573-593, September.
    9. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    10. Hamadène, S. & Wang, H., 2009. "BSDEs with two RCLL reflecting obstacles driven by Brownian motion and Poisson measure and a related mixed zero-sum game," Stochastic Processes and their Applications, Elsevier, vol. 119(9), pages 2881-2912, September.
    11. Said Hamadène & Rui Mu, 2021. "Risk-Sensitive Nonzero-Sum Stochastic Differential Game with Unbounded Coefficients," Dynamic Games and Applications, Springer, vol. 11(1), pages 84-108, March.
    12. Rainer Buckdahn & Marc Quincampoix & Catherine Rainer & Yuhong Xu, 2016. "Differential games with asymmetric information and without Isaacs’ condition," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 795-816, November.
    13. Alessandra Buratto & Luca Grosset & Bruno Viscolani, 2012. "ε-Subgame Perfectness of an Open-Loop Stackelberg Equilibrium in Linear-State Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 269-279, September.
    14. Bolei Di & Andrew Lamperski, 2022. "Newton’s Method, Bellman Recursion and Differential Dynamic Programming for Unconstrained Nonlinear Dynamic Games," Dynamic Games and Applications, Springer, vol. 12(2), pages 394-442, June.
    15. Basu, Arnab & Ghosh, Mrinal Kanti, 2014. "Zero-sum risk-sensitive stochastic games on a countable state space," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 961-983.
    16. Bahlali, Khaled & Hamadène, SaI¨d & Mezerdi, Brahim, 2005. "Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1107-1129, July.
    17. Sylvain Sorin, 2011. "Zero-Sum Repeated Games: Recent Advances and New Links with Differential Games," Dynamic Games and Applications, Springer, vol. 1(1), pages 172-207, March.
    18. Duan, Lian & Liu, Jinzhi & Huang, Chuangxia & Wang, Zengyun, 2022. "Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    19. Laraki, Rida & Sorin, Sylvain, 2015. "Advances in Zero-Sum Dynamic Games," Handbook of Game Theory with Economic Applications,, Elsevier.
    20. Fabio Bagagiolo & Rosario Maggistro & Marta Zoppello, 2020. "A Differential Game with Exit Costs," Dynamic Games and Applications, Springer, vol. 10(2), pages 297-327, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1766-:d:821070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.