IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1677-d815483.html
   My bibliography  Save this article

Maintenance Strategies Definition Based on Systemic Resilience Assessment: A Fuzzy Approach

Author

Listed:
  • Orlando Durán

    (Pontificia Universidad Católica de Valparaíso, Valparaíso 2490000, Chile)

  • Belén Vergara

    (Pontificia Universidad Católica de Valparaíso, Valparaíso 2490000, Chile)

Abstract

The present paper aims to provide production systems with a decision-making tool that allows the assessment of the resilience of their equipment, processes and/or sub systems and, certainly, the system itself. The ultimate goal is to detect the critical points of a production system in order to gain strength, efficiency and resilience to face new and existing threats and challenges. In this regard, this paper presents a model that aims to calculate the resilience score of a process from various parameters and to rate it on the resilience scale using linguistic terms. In order to manage uncertainty, a fuzzy model has been put forward with the objective of being an integral tool of maintenance strategy surveillance and definition. Finally, and towards putting into practice the proposed model, a real case study, in the context of mining operations, is presented. This will help the process identify the areas/equipment for improvement and afterwards overcome weaknesses that may affect the entire system’s resilience. The aforementioned model provides great support to the decision-making process in the field of plant maintenance strategies and physical asset management. We believe that the main impact of this proposal is that through the use of this type of decision tool, the correct definition of maintenance strategies and the appropriate selection of system topologies could be made regarding the systemic resilience as an overall objective.

Suggested Citation

  • Orlando Durán & Belén Vergara, 2022. "Maintenance Strategies Definition Based on Systemic Resilience Assessment: A Fuzzy Approach," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1677-:d:815483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pirbhulal, Sandeep & Gkioulos, Vasileios & Katsikas, Sokratis, 2021. "A Systematic Literature Review on RAMS analysis for critical infrastructures protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    2. Alessandro Annarelli & Cinzia Battistella & Fabio Nonino, 2020. "A Framework to Evaluate the Effects of Organizational Resilience on Service Quality," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    3. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    4. Marta Negri & Enrico Cagno & Claudia Colicchia & Joseph Sarkis, 2021. "Integrating sustainability and resilience in the supply chain: A systematic literature review and a research agenda," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 2858-2886, November.
    5. Slavko Arsovski & Goran Putnik & Zora Arsovski & Danijela Tadic & Aleksandar Aleksic & Aleksandar Djordjevic & Slavisa Moljevic, 2015. "Modelling and Enhancement of Organizational Resilience Potential in Process Industry SMEs," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Yang, Bofan & Zhang, Lin & Zhang, Bo & Wang, Wenfeng & Zhang, Minglinag, 2021. "Resilience Metric of Equipment System: Theory, Measurement and Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Danijela Tadić & Aleksandar Aleksić & Miladin Stefanović & Slavko Arsovski, 2014. "Evaluation and Ranking of Organizational Resilience Factors by Using a Two-Step Fuzzy AHP and Fuzzy TOPSIS," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2024. "A resilience-based maintenance optimisation framework using multiple criteria and Knapsack methods," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hao & Wang, Haiqing & Yang, Ming & Reniers, Genserik, 2022. "A STAMP-based approach to quantitative resilience assessment of chemical process systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Wu, Jingyi & Yu, Yang & Yu, Jianxing & Chang, Xueying & Xu, Lixin & Zhang, Wenhao, 2023. "A Markov resilience assessment framework for tension leg platform under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Jiang, Qiangqiang & Cai, Baoping & Zhang, Yanping & Xie, Min & Liu, Cuiwei, 2023. "Resilience assessment methodology of natural gas network system under random leakage," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system based on multi-dimensional continuous-time Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    6. Basu R, Jothi & Abdulrahman, Muhammad D. & Yuvaraj, M., 2023. "Improving agility and resilience of automotive spares supply chain: The additive manufacturing enabled truck model," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    7. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Stavros Sindakis & Saloome Showkat & Jiafu Su, 2023. "Unveiling the Influence: Exploring the Impact of Interrelationships among E-Commerce Supply Chain Members on Supply Chain Sustainability," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    9. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.
    10. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Surajit Bag & Muhammad Sabbir Rahman, 2024. "Navigating circular economy: Unleashing the potential of political and supply chain analytics skills among top supply chain executives for environmental orientation, regenerative supply chain practice," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 504-528, February.
    12. Edgars Sedovs & Tatjana Volkova, 2024. "Sustainability: Is It a Strategic Management Research Fashion?," Sustainability, MDPI, vol. 16(17), pages 1-24, August.
    13. Tianyu Lu & Hongyu Li, 2024. "Can China’s Regional Industrial Chain Innovation and Reform Policy Make the Impossible Triangle of Energy Attainable? A Causal Inference Study on the Effect of Improving Industrial Chain Resilience," Energies, MDPI, vol. 17(10), pages 1-33, May.
    14. Zhang Yu & Muhammad Umar & S. Abdul Rehman, 2022. "Adoption of technological innovation and recycling practices in automobile sector: under the Covid-19 pandemic," Operations Management Research, Springer, vol. 15(1), pages 298-306, June.
    15. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    16. Liangxing Jin & Pingting Liu & Wenbing Yao & Junjie Wei, 2024. "A Comprehensive Evaluation of Resilience in Abandoned Open-Pit Mine Slopes Based on a Two-Dimensional Cloud Model with Combination Weighting," Mathematics, MDPI, vol. 12(8), pages 1-26, April.
    17. Eichhorn Colombo, Konrad W., 2023. "Financial resilience analysis of floating production, storage and offloading plant operated in Norwegian Arctic region: Case study using inter-/transdisciplinary system dynamics modeling and simulatio," Energy, Elsevier, vol. 268(C).
    18. Yongming Wang & Umar Iqbal & Yingmei Gong, 2021. "The Performance of Resilient Supply Chain Sustainability in Covid-19 by Sourcing Technological Integration," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    19. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Hatice Şengül & Dilem Marşan & Tuğçe Gün, 2019. "Survey assessment of organizational resiliency potential of a group of Seveso organizations in Turkey," Journal of Risk and Reliability, , vol. 233(3), pages 470-486, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1677-:d:815483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.