IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v8y2024i2p49-d1389291.html
   My bibliography  Save this article

Implementing Additive Manufacturing in Orthopedic Shoe Supply Chains—Cost and Lead Time Comparison

Author

Listed:
  • Victor Verboeket

    (School for Technology and Logistics, Fontys University of Applied Science, 5912BG Venlo, The Netherlands)

  • Harold Krikke

    (Faculty of Management, Science and Technology, Open University of the Netherlands, 6401DL Heerlen, The Netherlands)

  • Mika Salmi

    (Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland)

Abstract

Background : Additive manufacturing (AM) for patient-specific medical care products offers great opportunities. However, evidence about the supply chain (SC) performance impact based on empirical data is limited. Methods : In this case study, we gathered real-life data about a traditional manufacturing orthopedic shoe SC and developed future scenarios in which AM is introduced at various points and with different degrees of penetration in the SC. Results : Presently, AM can only replace traditional manufacturing of tools and shoe components at a higher total cost. However, with maturing technology, the complete AM production of orthopedic shoes is expected to become feasible. Theoretically, that could disrupt existing SCs, eliminating 70% of the SC steps, improving SC lead time by 90%, and altering SC relations. However, certain thresholds currently prevent disruption. Specifically, the AM of complete orthopedic shoes has to become possible, manufacturing prices have to drop, and traditional craftsmanship has to be integrated into the digital product design. Conclusions : A framework for transition pathways, including directions for future research, is formed. Findings provide valuable insights for scholars and decision makers in the patient-specific products industry, health insurance providers, and healthcare policy makers to be better prepared by adjusting SC designs, relationships, and remuneration programs while AM technology develops towards maturity.

Suggested Citation

  • Victor Verboeket & Harold Krikke & Mika Salmi, 2024. "Implementing Additive Manufacturing in Orthopedic Shoe Supply Chains—Cost and Lead Time Comparison," Logistics, MDPI, vol. 8(2), pages 1-23, May.
  • Handle: RePEc:gam:jlogis:v:8:y:2024:i:2:p:49-:d:1389291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/8/2/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/8/2/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogers, Marcel & Hadar, Ronen & Bilberg, Arne, 2016. "Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 225-239.
    2. Jose M. Framinan & Paz Perez-Gonzalez & Victor Fernandez-Viagas, 2023. "An overview on the use of operations research in additive manufacturing," Annals of Operations Research, Springer, vol. 322(1), pages 5-40, March.
    3. Chekurov, Sergei & Metsä-Kortelainen, Sini & Salmi, Mika & Roda, Irene & Jussila, Ari, 2018. "The perceived value of additively manufactured digital spare parts in industry: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 205(C), pages 87-97.
    4. Mellor, Stephen & Hao, Liang & Zhang, David, 2014. "Additive manufacturing: A framework for implementation," International Journal of Production Economics, Elsevier, vol. 149(C), pages 194-201.
    5. Matthias M. Meyer & Andreas H. Glas & Michael Eßig, 2021. "Systematic review of sourcing and 3D printing: make-or-buy decisions in industrial buyer–supplier relationships," Management Review Quarterly, Springer, vol. 71(4), pages 723-752, October.
    6. Weller, Christian & Kleer, Robin & Piller, Frank T., 2015. "Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited," International Journal of Production Economics, Elsevier, vol. 164(C), pages 43-56.
    7. Rayna, Thierry & Striukova, Ludmila, 2016. "From rapid prototyping to home fabrication: How 3D printing is changing business model innovation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 214-224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Mierzwa & Magdalena Syrkiewicz-Świtała & Bernadeta Kuraszewska & Rafał Świtała & Jolanta Grzebieluch & Beata Detyna & Jerzy Dariusz Detyna, 2024. "Competencies of a Healthcare Manager in the Context of Hospital and Ambulateral Diagnostic Imaging Centers," Logistics, MDPI, vol. 8(4), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
    2. Kleer, Robin & Piller, Frank T., 2019. "Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 216(C), pages 23-34.
    3. Holzmann, Patrick & Breitenecker, Robert J. & Schwarz, Erich J. & Gregori, Patrick, 2020. "Business model design for novel technologies in nascent industries: An investigation of 3D printing service providers," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    4. Beltagui, Ahmad & Kunz, Nathan & Gold, Stefan, 2020. "The role of 3D printing and open design on adoption of socially sustainable supply chain innovation," International Journal of Production Economics, Elsevier, vol. 221(C).
    5. Robert B. Handfield & James Aitken & Neil Turner & Tillmann Boehme & Cecil Bozarth, 2022. "Assessing Adoption Factors for Additive Manufacturing: Insights from Case Studies," Logistics, MDPI, vol. 6(2), pages 1-22, June.
    6. Culot, Giovanna & Orzes, Guido & Sartor, Marco & Nassimbeni, Guido, 2020. "The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    7. Marco Savastano & Carlo Amendola & Francesco Bellini & Fabrizio D’Ascenzo, 2019. "Contextual Impacts on Industrial Processes Brought by the Digital Transformation of Manufacturing: A Systematic Review," Sustainability, MDPI, vol. 11(3), pages 1-38, February.
    8. Jiang, Ruth & Kleer, Robin & Piller, Frank T., 2017. "Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 84-97.
    9. Friedrich, Anne & Lange, Anne & Elbert, Ralf, 2022. "How additive manufacturing drives business model change: The perspective of logistics service providers," International Journal of Production Economics, Elsevier, vol. 249(C).
    10. Victor Verboeket & Harold Krikke, 2019. "Additive Manufacturing: A Game Changer in Supply Chain Design," Logistics, MDPI, vol. 3(2), pages 1-27, April.
    11. Despeisse, M. & Baumers, M. & Brown, P. & Charnley, F. & Ford, S.J. & Garmulewicz, A. & Knowles, S. & Minshall, T.H.W. & Mortara, L. & Reed-Tsochas, F.P. & Rowley, J., 2017. "Unlocking value for a circular economy through 3D printing: A research agenda," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 75-84.
    12. Ukobitz, Desirée Valeria & Faullant, Rita, 2022. "The relative impact of isomorphic pressures on the adoption of radical technology: Evidence from 3D printing," Technovation, Elsevier, vol. 113(C).
    13. Shivam Gupta & Sachin Modgil & Piera Centobelli & Roberto Cerchione & Serena Strazzullo, 2022. "Additive Manufacturing and Green Information Systems as Technological Capabilities for Firm Performance," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 515-534, December.
    14. Beltagui, Ahmad & Sesis, Achilleas & Stylos, Nikolaos, 2021. "A bricolage perspective on democratising innovation: The case of 3D printing in makerspaces," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    15. Naghshineh, Bardia & Ribeiro, André & Jacinto, Celeste & Carvalho, Helena, 2021. "Social impacts of additive manufacturing: A stakeholder-driven framework," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    16. Foshammer, Jeppe & Søberg, Peder Veng & Helo, Petri & Ituarte, Iñigo Flores, 2022. "Identification of aftermarket and legacy parts suitable for additive manufacturing: A knowledge management-based approach," International Journal of Production Economics, Elsevier, vol. 253(C).
    17. Candi, Marina & Beltagui, Ahmad, 2019. "Effective use of 3D printing in the innovation process," Technovation, Elsevier, vol. 80, pages 63-73.
    18. Chekurov, Sergei & Metsä-Kortelainen, Sini & Salmi, Mika & Roda, Irene & Jussila, Ari, 2018. "The perceived value of additively manufactured digital spare parts in industry: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 205(C), pages 87-97.
    19. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    20. Matthias M. Meyer & Andreas H. Glas & Michael Eßig, 2021. "Systematic review of sourcing and 3D printing: make-or-buy decisions in industrial buyer–supplier relationships," Management Review Quarterly, Springer, vol. 71(4), pages 723-752, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:8:y:2024:i:2:p:49-:d:1389291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.