IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i11p413-d435848.html
   My bibliography  Save this article

Climate-Wise Habitat Connectivity Takes Sustained Stakeholder Engagement

Author

Listed:
  • Morgan Gray

    (Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA 94720, USA
    Dwight Center for Conservation Science, Pepperwood, Santa Rosa, CA 95404, USA)

  • Elisabeth Micheli

    (Dwight Center for Conservation Science, Pepperwood, Santa Rosa, CA 95404, USA)

  • Tosha Comendant

    (Dwight Center for Conservation Science, Pepperwood, Santa Rosa, CA 95404, USA)

  • Adina Merenlender

    (Department of Environmental Science, Policy, and Management, University of California at Berkeley, Berkeley, CA 94720, USA)

Abstract

Well-managed and connected protected area networks are needed to combat the 6th mass extinction, yet the implementation of plans intended to secure landscape connectivity remains insufficient. The failure to translate planning efforts into effective action (i.e., the research-implementation gap) hinders our ability to conserve biodiversity threatened by ongoing climate change and habitat fragmentation. Sustained collaboration between researchers and practitioners to co-produce conservation strategies can bridge this gap by providing end-users with implementation guidance based on legitimate, relevant, and trusted information. However, few case studies capture methods for the co-production and use of climate-wise connectivity knowledge. Here we describe the framework for sustained engagement used by a multi-jurisdictional practitioner network to co-produce climate-wise linkages for the interior coastal ranges in Northern California. We found iterative co-production shaped ecological objectives, input data, analytical methods, and implementation priorities. Stakeholders used both co-produced and local socio-ecological (e.g., development threat, management priorities) knowledge to finalize corridor implementation plans. Priority corridors afforded greater climate benefit and were more likely to connect lands managed by participant organizations. Our results demonstrate how collaborative partnerships can bridge the gap between connectivity research and implementation. Lessons learned, outcomes, and future plans provide insights to advance landscape-scale resilience to climate change.

Suggested Citation

  • Morgan Gray & Elisabeth Micheli & Tosha Comendant & Adina Merenlender, 2020. "Climate-Wise Habitat Connectivity Takes Sustained Stakeholder Engagement," Land, MDPI, vol. 9(11), pages 1-21, October.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:413-:d:435848
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/11/413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/11/413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morgan Gray & Elisabeth Micheli & Tosha Comendant & Adina Merenlender, 2020. "Quantifying Climate-Wise Connectivity across a Topographically Diverse Landscape," Land, MDPI, vol. 9(10), pages 1-18, September.
    2. Oscar Venter & Eric W. Sanderson & Ainhoa Magrach & James R. Allan & Jutta Beher & Kendall R. Jones & Hugh P. Possingham & William F. Laurance & Peter Wood & Balázs M. Fekete & Marc A. Levy & James E., 2016. "Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
    3. Gigi Owen & Daniel B. Ferguson & Ben McMahan, 2019. "Contextualizing climate science: applying social learning systems theory to knowledge production, climate services, and use-inspired research," Climatic Change, Springer, vol. 157(1), pages 151-170, November.
    4. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    5. James E. M. Watson & Nigel Dudley & Daniel B. Segan & Marc Hockings, 2014. "The performance and potential of protected areas," Nature, Nature, vol. 515(7525), pages 67-73, November.
    6. Maria Carmen Lemos & Christine J. Kirchhoff & Vijay Ramprasad, 2012. "Narrowing the climate information usability gap," Nature Climate Change, Nature, vol. 2(11), pages 789-794, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Megan K. Jennings & Katherine A. Zeller & Rebecca L. Lewison, 2021. "Dynamic Landscape Connectivity Special Issue Editorial," Land, MDPI, vol. 10(6), pages 1-2, May.
    2. John D. Coley & Nicole Betz & Brian Helmuth & Keith Ellenbogen & Steven B. Scyphers & Daniel Adams, 2021. "Beliefs about Human-Nature Relationships and Implications for Investment and Stewardship Surrounding Land-Water System Conservation," Land, MDPI, vol. 10(12), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Santiago Castillo & Camilo Andrés Correa Ayram & Clara L. Matallana Tobón & Germán Corzo & Alexandra Areiza & Roy González-M. & Felipe Serrano & Luis Chalán Briceño & Felipe Sánchez Puertas & Ale, 2020. "Connectivity of Protected Areas: Effect of Human Pressure and Subnational Contributions in the Ecoregions of Tropical Andean Countries," Land, MDPI, vol. 9(8), pages 1-19, July.
    2. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    3. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    4. Nguyen, Minh-Hoang, 2023. "Investigating urban residents' involvement in biodiversity conservation in protected areas: Empirical evidence from Vietnam," Thesis Commons z2hjv, Center for Open Science.
    5. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    6. Changjun Gu & Pei Zhao & Qiong Chen & Shicheng Li & Lanhui Li & Linshan Liu & Yili Zhang, 2020. "Forest Cover Change and the Effectiveness of Protected Areas in the Himalaya since 1998," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    7. Caitlin Cunningham & Karen F. Beazley, 2018. "Changes in Human Population Density and Protected Areas in Terrestrial Global Biodiversity Hotspots, 1995–2015," Land, MDPI, vol. 7(4), pages 1-20, November.
    8. Li, Shicheng & Zhang, Yili & Wang, Zhaofeng & Li, Lanhui, 2018. "Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions," Ecosystem Services, Elsevier, vol. 30(PB), pages 276-286.
    9. L. Kiely & D. V. Spracklen & S. R. Arnold & E. Papargyropoulou & L. Conibear & C. Wiedinmyer & C. Knote & H. A. Adrianto, 2021. "Assessing costs of Indonesian fires and the benefits of restoring peatland," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    10. Reaser, Jamie & Tabor, Gary M. & Becker, Daniel & Muruthi, Philip & Witt, Arne & Woodley, Stephen J. & Ruiz-Aravena, Manuel & Patz, Jonathan Alan MD, MPH & Hickey, Valerie & Hudson, Peter, 2020. "Land use-induced spillover: priority actions for protected and conserved area managers," EcoEvoRxiv bmfhw, Center for Open Science.
    11. Nguyen, Minh-Hoang & Vuong, Quan-Hoang, 2020. "Evaluation of the Aichi Biodiversity Targets: The international collaboration trilemma in interdisciplinary research," OSF Preprints 84j76, Center for Open Science.
    12. Mingjun Jiang & Xinfei Zhao & Run Wang & Le Yin & Baolei Zhang, 2023. "Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons," Land, MDPI, vol. 12(4), pages 1-17, April.
    13. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Pablo Imbach & Megan Beardsley & Claudia Bouroncle & Claudia Medellin & Peter Läderach & Hugo Hidalgo & Eric Alfaro & Jacob Etten & Robert Allan & Debbie Hemming & Roger Stone & Lee Hannah & Camila I., 2017. "Climate change, ecosystems and smallholder agriculture in Central America: an introduction to the special issue," Climatic Change, Springer, vol. 141(1), pages 1-12, March.
    15. Joshua Fisher & Poonam Arora & Sophia Rhee, 2018. "Conserving Tropical Forests: Can Sustainable Livelihoods Outperform Artisanal or Informal Mining?," Sustainability, MDPI, vol. 10(8), pages 1-12, July.
    16. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    17. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    18. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    19. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    20. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:413-:d:435848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.