IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i4p869-d1121373.html
   My bibliography  Save this article

Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons

Author

Listed:
  • Mingjun Jiang

    (School of Geography and Environment, Shandong Normal University, Jinan 250014, China)

  • Xinfei Zhao

    (School of Geography and Environment, Shandong Normal University, Jinan 250014, China)

  • Run Wang

    (Shandong Provincial Territorial Spatial Ecological Restoration Center, Jinan 250014, China)

  • Le Yin

    (School of Geography and Environment, Shandong Normal University, Jinan 250014, China)

  • Baolei Zhang

    (School of Geography and Environment, Shandong Normal University, Jinan 250014, China)

Abstract

The intensity of human pressure (HP) has an important impact on the biodiversity and ecosystem services of nature reserves (NRs), and the conflict and the coordination between NRs and human activities are now key issues to solve in the construction of NR systems. This study improved and applied a human footprint (HF) model that considers population density, land use, night light, grazing intensity, and road construction as indicators of human activity to evaluate the effectiveness of NRs in the Qinghai–Tibet Plateau in mitigating HP from 2000 to 2020. The results indicated that during this period, the average HP in the national NRs of the plateau increased from 1.47646 to 1.76687, where values were generally high in the east and low in the west. The average value in wetland NRs was the largest and had the smallest growth rate, while that in desert NRs was the smallest and had the largest growth rate. From 2000 to 2020, the average HP in the core areas, buffer areas, and experimental areas of the NRs increased by 0.12969, 0.29909, and 0.44244, respectively. It is a challenge for the Chinese government to strengthen the ability of NRs to mitigate HP on the wetland reserves and experimental zones in the Qinghai–Tibet Plateau region.

Suggested Citation

  • Mingjun Jiang & Xinfei Zhao & Run Wang & Le Yin & Baolei Zhang, 2023. "Assessment of Conservation Effectiveness of the Qinghai–Tibet Plateau Nature Reserves from a Human Footprint Perspective with Global Lessons," Land, MDPI, vol. 12(4), pages 1-17, April.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:869-:d:1121373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/4/869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/4/869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Shicheng Li & Shan Su & Yanxia Liu & Xuewu Zhou & Quanxin Luo & Basanta Paudel, 2022. "Effectiveness of the Qilian Mountain Nature Reserve of China in Reducing Human Impacts," Land, MDPI, vol. 11(7), pages 1-12, July.
    3. Min Gon Chung & Tao Pan & Xintong Zou & Jianguo Liu, 2018. "Complex Interrelationships between Ecosystem Services Supply and Tourism Demand: General Framework and Evidence from the Origin of Three Asian Rivers," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    4. Linyi Tan & Guancheng Guo & Shicheng Li, 2021. "The Sanjiangyuan Nature Reserve Is Partially Effective in Mitigating Human Pressures," Land, MDPI, vol. 11(1), pages 1-15, December.
    5. César Benavidez-Silva & Magdalena Jensen & Patricio Pliscoff, 2021. "Future Scenarios for Land Use in Chile: Identifying Drivers of Change and Impacts over Protected Area System," Land, MDPI, vol. 10(4), pages 1-21, April.
    6. Baifei Ren & Keunhyun Park & Anil Shrestha & Jun Yang & Melissa McHale & Weilan Bai & Guangyu Wang, 2022. "Impact of Human Disturbances on the Spatial Heterogeneity of Landscape Fragmentation in Qilian Mountain National Park, China," Land, MDPI, vol. 11(11), pages 1-26, November.
    7. James E. M. Watson & Nigel Dudley & Daniel B. Segan & Marc Hockings, 2014. "The performance and potential of protected areas," Nature, Nature, vol. 515(7525), pages 67-73, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shicheng & Zhang, Heng & Zhou, Xuewu & Yu, Haibin & Li, Wangjun, 2020. "Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau," Ecosystem Services, Elsevier, vol. 43(C).
    2. Nguyen, Minh-Hoang, 2023. "Investigating urban residents' involvement in biodiversity conservation in protected areas: Empirical evidence from Vietnam," Thesis Commons z2hjv, Center for Open Science.
    3. Changjun Gu & Pei Zhao & Qiong Chen & Shicheng Li & Lanhui Li & Linshan Liu & Yili Zhang, 2020. "Forest Cover Change and the Effectiveness of Protected Areas in the Himalaya since 1998," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    4. Luis Santiago Castillo & Camilo Andrés Correa Ayram & Clara L. Matallana Tobón & Germán Corzo & Alexandra Areiza & Roy González-M. & Felipe Serrano & Luis Chalán Briceño & Felipe Sánchez Puertas & Ale, 2020. "Connectivity of Protected Areas: Effect of Human Pressure and Subnational Contributions in the Ecoregions of Tropical Andean Countries," Land, MDPI, vol. 9(8), pages 1-19, July.
    5. Morgan Gray & Elisabeth Micheli & Tosha Comendant & Adina Merenlender, 2020. "Climate-Wise Habitat Connectivity Takes Sustained Stakeholder Engagement," Land, MDPI, vol. 9(11), pages 1-21, October.
    6. L. Kiely & D. V. Spracklen & S. R. Arnold & E. Papargyropoulou & L. Conibear & C. Wiedinmyer & C. Knote & H. A. Adrianto, 2021. "Assessing costs of Indonesian fires and the benefits of restoring peatland," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    8. Nguyen, Minh-Hoang & Vuong, Quan-Hoang, 2020. "Evaluation of the Aichi Biodiversity Targets: The international collaboration trilemma in interdisciplinary research," OSF Preprints 84j76, Center for Open Science.
    9. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Andrew Rule & Sarah-Eve Dill & Gordy Sun & Aidan Chen & Senan Khawaja & Ingrid Li & Vincent Zhang & Scott Rozelle, 2022. "Challenges and Opportunities in Aligning Conservation with Development in China’s National Parks: A Narrative Literature Review," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    11. Joshua Fisher & Poonam Arora & Sophia Rhee, 2018. "Conserving Tropical Forests: Can Sustainable Livelihoods Outperform Artisanal or Informal Mining?," Sustainability, MDPI, vol. 10(8), pages 1-12, July.
    12. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    13. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    14. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    15. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    16. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    17. Chunrong Mi & Liang Ma & Mengyuan Yang & Xinhai Li & Shai Meiri & Uri Roll & Oleksandra Oskyrko & Daniel Pincheira-Donoso & Lilly P. Harvey & Daniel Jablonski & Barbod Safaei-Mahroo & Hanyeh Ghaffari , 2023. "Global Protected Areas as refuges for amphibians and reptiles under climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Chomitz, Kenneth M. & Thomas, Timothy S. & Brandão, Antônio Salazar P., 2005. "The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 43(4), January.
    19. Ying Liang & Wei Song, 2022. "Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A Bibliometric Review," Land, MDPI, vol. 11(12), pages 1-23, November.
    20. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:4:p:869-:d:1121373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.