IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p408-d1592234.html
   My bibliography  Save this article

Multi-Scenario Simulation of Ecosystem Service Value in Beijing’s Green Belts Based on PLUS Model

Author

Listed:
  • Ziying Hu

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
    These authors contributed equally to this work.)

  • Siyuan Wang

    (School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
    Beijing Laboratory of Urban and Rural Ecology and Environment, Beijing Forestry University, Beijing 100083, China
    National Forestry and Grassland Administration Key Laboratory of Urban and Rural Landscape Construction, Beijing Forestry University, Beijing 100083, China
    These authors contributed equally to this work.)

Abstract

Urbanization and economic growth have substantially modified the land utilization structure, affecting ecosystem services and their spatial distribution. As a crucial component of Beijing’s urban framework, the city’s green belts, located at the periphery of its core metropolitan area, play a vital role in supplying urban ecosystem services. They also represent a focal point for land use transformation conflicts, making them an important study area. This research utilizes land utilization data from 2000, 2005, 2010, 2015, and 2020 as the primary dataset. It adopts a modified standard equivalent factor and integrates it with the Patch-Generaling Land Use Simulation (PLUS) model to model land utilization in Beijing’s green belts for 2035 under three scenarios: the natural development scenario (NDS), ecological protection scenario (EPS) and cultivated protection scenario (CPS). The study aims to analyze and project the spatial and temporal evolution of ecosystem service values (ESVs) in 2035 under different scenarios in the green belts of Beijing. The results indicate that (1) land use in Beijing’s green belts is dominated by cropland and construction land. Construction land has expanded significantly since 2000, increasing by 500.78 km 2 , while cropland has decreased by 488.47 km 2 . Woodland, grassland, and water have also seen a reduction. Overall, there is a trend of woodland and water being converted into cropland, with cropland subsequently transitioning into construction land. (2) In the NDS, construction land increases by 91.76 km 2 , while cropland, grassland, and water decrease. In EDS, the growth of construction land decelerates to 22.09 km 2 , the reduction in cropland decelerates, and the conversion of cropland to construction land is limited. Grassland and water remain largely unchanged, and woodland experiences a slight increase. In CPS, the conversion of cropland to construction land is notably reduced, with construction land increasing by 11.97 km 2 , woodland increasing slightly, and grassland and water decreasing slightly. (3) The ESV ranking across scenarios is as follows: EPS 1830.72 mln yuan > CPS 1816.23 mln yuan > NDS 1723.28 mln yuan. Hydrological regulation and climate regulation are the dominant services in all scenarios. ESV in EPS attains the greatest economic gains. This study contributes to understanding the effects of land utilization changes on ESV, offering valuable empirical evidence for sustainable development decision-making in swiftly urbanizing areas.

Suggested Citation

  • Ziying Hu & Siyuan Wang, 2025. "Multi-Scenario Simulation of Ecosystem Service Value in Beijing’s Green Belts Based on PLUS Model," Land, MDPI, vol. 14(2), pages 1-19, February.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:408-:d:1592234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lesong Zhao & Guangsheng Liu & Chunlong Xian & Jiaqi Nie & Yao Xiao & Zhigang Zhou & Xiting Li & Hongmei Wang, 2022. "Simulation of Land Use Pattern Based on Land Ecological Security: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 19(15), pages 1-20, July.
    2. Fengqiang Wu & Caijian Mo & Xiaojun Dai, 2022. "Analysis of the Driving Force of Land Use Change Based on Geographic Detection and Simulation of Future Land Use Scenarios," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    3. Xinyu Yan & Muyi Huang & Yuru Tang & Qin Guo & Xue Wu & Guozhao Zhang, 2024. "Study on the Dynamic Change of Land Use in Megacities and Its Impact on Ecosystem Services and Modeling Prediction," Sustainability, MDPI, vol. 16(13), pages 1-28, June.
    4. Xiaoping Xie & Hanna Kang & Martin Behnisch & Martin Baildon & Tobias Krüger, 2020. "To What Extent Can the Green Belts Prevent Urban Sprawl?—A Comparative Study of Frankfurt am Main, London and Seoul," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    5. Zheng, Xinyi & Zhang, Junze & Cao, Shixiong, 2018. "Net value of grassland ecosystem services in mainland China," Land Use Policy, Elsevier, vol. 79(C), pages 94-101.
    6. Jingyi Zhang & Hanqi Ding & Jingkun Xu & Bohong Zheng, 2024. "A Simulation-Based Prediction of Land Use Change Impacts on Carbon Storage from a Regional Imbalance Perspective: A Case Study of Hunan Province, China," Land, MDPI, vol. 13(10), pages 1-22, October.
    7. Aibin Wu & Jianwen Zhang & Yanxia Zhao & Huitao Shen & Xiaoping Guo, 2022. "Simulation and Optimization of Supply and Demand Pattern of Multiobjective Ecosystem Services—A Case Study of the Beijing-Tianjin-Hebei Region," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    8. Xiumei Tang & Yu Liu & Yuchun Pan, 2020. "An Evaluation and Region Division Method for Ecosystem Service Supply and Demand Based on Land Use and POI Data," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    9. Lin Chu & Tiancheng Sun & Tianwei Wang & Zhaoxia Li & Chongfa Cai, 2018. "Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA)," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Chang & Zhibo Zhao & Lixin Jiang & Yuefen Li, 2022. "Quantifying the Ecosystem Services of Soda Saline-Alkali Grasslands in Western Jilin Province, NE China," IJERPH, MDPI, vol. 19(8), pages 1-21, April.
    2. Zilin Zhou & Feng Cheng & Jinliang Wang & Bangjin Yi, 2023. "A Study on the Impact of Roads on Grassland Degradation in Shangri-La City," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    3. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    4. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    5. Lin Chu & Tiancheng Sun & Tianwei Wang & Zhaoxia Li & Chongfa Cai, 2020. "Temporal and Spatial Heterogeneity of Soil Erosion and a Quantitative Analysis of its Determinants in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    6. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    7. Xinhao Suo & Shixiong Cao, 2021. "China’s three north shelter forest program: cost–benefit analysis and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14605-14618, October.
    8. Noszczyk, Tomasz & Gorzelany, Julia & Kukulska-Kozieł, Anita & Hernik, Józef, 2022. "The impact of the COVID-19 pandemic on the importance of urban green spaces to the public," Land Use Policy, Elsevier, vol. 113(C).
    9. Yu Zhang & Pengcheng Wang & Tianwei Wang & Jingwei Li & Zhaoxia Li & Mingjun Teng & Yunbing Gao, 2020. "Using Vegetation Indices to Characterize Vegetation Cover Change in the Urban Areas of Southern China," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    10. Rigala Na & Xinliang Xu & Shihao Wang, 2024. "Spatiotemporal Analysis of Economic and Ecological Coupled Coordination: A Case Study of the Beijing–Tianjin–Hebei Urban Agglomeration," Land, MDPI, vol. 13(8), pages 1-21, July.
    11. Nurdan Erdoğan, 2025. "Spatiotemporal Analysis of Habitat Quality and Connectivity in Response to Land Use/Cover Change: A Case Study of İzmir," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    12. Meizhe Liao & Zongwen Zhang & Ruirui Yan & Keyu Bai, 2024. "The Assessment of Biodiversity Changes and Sustainable Agricultural Development in The Beijing-Tianjin-Hebei Region of China," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    13. Suling He & Jinliang Wang & Jie Li & Jinming Sha & Jinchun Zhou & Yuanmei Jiao, 2024. "Quantification and Simulation of the Ecosystem Service Value of Karst Region in Southwest China," Land, MDPI, vol. 13(6), pages 1-21, June.
    14. Fan, Shengyue & He, Miao & Zhang, Tianyu & Huo, Yajing & Fan, Di, 2022. "Credibility measurement as a tool for conserving nature: Chinese herders’ livelihood capitals and payment for grassland ecosystem services," Land Use Policy, Elsevier, vol. 115(C).
    15. Yunzhi Zhang & Tongyan Zheng & Chen Yu & Jing Ren & Xuegang Gong & Hao Wang & Yihao Duan, 2023. "Multi-Perspective Analysis of Land Changes in the Transitional Zone between the Mu Us Desert and the Loess Plateau in China from 2000 to 2020," Land, MDPI, vol. 12(5), pages 1-16, May.
    16. Adriana A. Zuniga-Teran & Blanca González-Méndez & Christina Scarpitti & Bo Yang & Joaquin Murrieta Saldivar & Irene Pineda & Guadalupe Peñúñuri & Eduardo Hinojosa Robles & Kassandra Soto Irineo & Ser, 2022. "Green Belt Implementation in Arid Lands through Soil Reconditioning and Landscape Design: The Case of Hermosillo, Mexico," Land, MDPI, vol. 11(12), pages 1-27, November.
    17. Shrestha, Kripa & Shakya, Bandana & Adhikari, Biraj & Nepal, Mani & Shaoliang, Yi, 2023. "Ecosystem services valuation for conservation and development decisions: A review of valuation studies and tools in the Far Eastern Himalaya," Ecosystem Services, Elsevier, vol. 61(C).
    18. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    19. Yunlin He & Yanhua Mo & Jiangming Ma, 2022. "Spatio-Temporal Evolution and Influence Mechanism of Habitat Quality in Guilin City, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    20. Dinghua Ou & Qi Zhang & Yijie Wu & Jing Qin & Jianguo Xia & Ouping Deng & Xuesong Gao & Jinhu Bian & Shangqi Gong, 2021. "Construction of a Territorial Space Classification System Based on Spatiotemporal Heterogeneity of Land Use and Its Superior Territorial Space Functions and Their Dynamic Coupling: Case Study on Qiong," IJERPH, MDPI, vol. 18(17), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:408-:d:1592234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.