IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p274-d1579015.html
   My bibliography  Save this article

Quantifying the Driving Forces of Water Conservation Using Geodetector with Optimized Parameters: A Case Study of the Yiluo River Basin

Author

Listed:
  • Kang Li

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

  • Hui Qian

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

  • Siqi Li

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

  • Zhiming Cao

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

  • Panpan Tian

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

  • Xiaoxin Shi

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

  • Jie Chen

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

  • Yanyan Gao

    (School of Water and Environment, Chang’an University, Xi’an 710054, China
    Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
    Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang’an University, Xi’an 710054, China)

Abstract

Accurately identifying the impact of different factors on water conservation is influenced by the spatial grid scale. However, existing studies on water conservation often overlook the Modifiable Areal Unit Problem (MAUP). MAUP is one of the key factors contributing to the uncertainty in spatial analysis results. The Qinling Mountains are a critical water conservation area, with the Yiluo River Basin (YLRB) as a key sub-basin. This study uses the Optimized Parameter GeoDetector (OPGD) model to analyze water conservation changes and influencing factors in the YLRB from 1990 to 2020. By optimizing spatial scale (2 km grid) and driving factor discretization, the OPGD model addresses spatial heterogeneity and the MAUP, enhancing analysis accuracy. Results show a fluctuating upward trend in water conservation depth, averaging 0.94 mm yearly, with a spatial decline from southwest to northeast. High–high and low–low clusters dominate the region, with some areas consistently showing high or low values. Key conservation zones expanded by 2748 km 2 , reflecting significant enhancement. Natural factors, particularly precipitation, predominantly influence water conservation, outweighing human activities. The interaction between precipitation and temperature notably affects dynamic changes, while human impacts, such as land use, play a secondary role. The findings suggest water management should prioritize climatic factors and integrate land-use policies to enhance conservation. The OPGD model’s application improves factor identification and supports targeted ecological and water management strategies.

Suggested Citation

  • Kang Li & Hui Qian & Siqi Li & Zhiming Cao & Panpan Tian & Xiaoxin Shi & Jie Chen & Yanyan Gao, 2025. "Quantifying the Driving Forces of Water Conservation Using Geodetector with Optimized Parameters: A Case Study of the Yiluo River Basin," Land, MDPI, vol. 14(2), pages 1-26, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:274-:d:1579015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marianna Olivadese & Maria Luisa Dindo, 2024. "Water, Ecosystem Services, and Urban Green Spaces in the Anthropocene," Land, MDPI, vol. 13(11), pages 1-27, November.
    2. Milena V. Sokolova & Brian D. Fath & Umberto Grande & Elvira Buonocore & Pier Paolo Franzese, 2024. "The Role of Green Infrastructure in Providing Urban Ecosystem Services: Insights from a Bibliometric Perspective," Land, MDPI, vol. 13(10), pages 1-20, October.
    3. Fisher, Brendan & Turner, R. Kerry & Morling, Paul, 2009. "Defining and classifying ecosystem services for decision making," Ecological Economics, Elsevier, vol. 68(3), pages 643-653, January.
    4. Lu, Chun Yan & Gu, Wei & Dai, Ai Hua & Wei, Hai Yan, 2012. "Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China," Ecological Modelling, Elsevier, vol. 242(C), pages 105-115.
    5. Sabita Shrestha & Shenghui Cui & Lilai Xu & Lihong Wang & Bikram Manandhar & Shengping Ding, 2021. "Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China," Land, MDPI, vol. 10(8), pages 1-18, August.
    6. Xichen Che & Liang Jiao & Xuli Zhu & Jingjing Wu & Qian Li, 2023. "Spatial-Temporal Dynamics of Water Conservation in Gannan in the Upper Yellow River Basin of China," Land, MDPI, vol. 12(7), pages 1-18, July.
    7. Qianru Chen & Xin Xu & Manyu Wu & Jiaming Wen & Jinlang Zou, 2022. "Assessing the Water Conservation Function Based on the InVEST Model: Taking Poyang Lake Region as an Example," Land, MDPI, vol. 11(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merica Slišković & Katja Božić & Jelena Žanić Mikuličić & Ines Kolanović, 2024. "Addressing the Significance of the Union List with a Focus on Marine Invasive Alien Species Impacts," Sustainability, MDPI, vol. 16(21), pages 1-25, October.
    2. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    3. Daniela D’Alessandro & Andrea Rebecchi & Letizia Appolloni & Andrea Brambilla & Silvio Brusaferro & Maddalena Buffoli & Maurizio Carta & Alessandra Casuccio & Liliana Coppola & Maria Vittoria Corazza , 2023. "Re-Thinking the Environment, Cities, and Living Spaces for Public Health Purposes, According with the COVID-19 Lesson: The LVII Erice Charter," Land, MDPI, vol. 12(10), pages 1-17, September.
    4. Aibo Jin & Gachen Zhang & Ping Ma & Xiangrong Wang, 2024. "Ecosystem Services Trade-Offs in the Chaohu Lake Basin Based on Land-Use Scenario Simulations," Land, MDPI, vol. 13(12), pages 1-29, December.
    5. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    6. Ze Han & Wei Song & Xiangzheng Deng, 2016. "Responses of Ecosystem Service to Land Use Change in Qinghai Province," Energies, MDPI, vol. 9(4), pages 1-16, April.
    7. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    8. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    9. Hooper, Tara & Cooper, Philip & Hunt, Alistair & Austen, Melanie, 2014. "A methodology for the assessment of local-scale changes in marine environmental benefits and its application," Ecosystem Services, Elsevier, vol. 8(C), pages 65-74.
    10. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    11. H. Spencer Banzhaf & James Boyd, 2012. "The Architecture and Measurement of an Ecosystem Services Index," Sustainability, MDPI, vol. 4(4), pages 1-32, March.
    12. Wang, Shifeng & Wang, Sicong & Smith, Pete, 2015. "Quantifying impacts of onshore wind farms on ecosystem services at local and global scales," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1424-1428.
    13. Elena Ojea & Paulo Nunes & Maria Loureiro, 2010. "Mapping Biodiversity Indicators and Assessing Biodiversity Values in Global Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(3), pages 329-347, November.
    14. Bo Yang & Ming-Han Li & Shujuan Li, 2013. "Design-with-Nature for Multifunctional Landscapes: Environmental Benefits and Social Barriers in Community Development," IJERPH, MDPI, vol. 10(11), pages 1-26, October.
    15. Shujun Liu & Xinzhuan Yao & Degang Zhao & Litang Lu, 2021. "Evaluation of the ecological benefits of tea gardens in Meitan County, China, using the InVEST model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7140-7155, May.
    16. Stapleton, L.M. & Hanna, P. & Ravenscroft, N. & Church, A., 2014. "A flexible ecosystem services proto-typology based on public opinion," Ecological Economics, Elsevier, vol. 106(C), pages 83-90.
    17. Norgaard, Richard B., 2010. "Ecosystem services: From eye-opening metaphor to complexity blinder," Ecological Economics, Elsevier, vol. 69(6), pages 1219-1227, April.
    18. Gregg C. Brill & Pippin M. L. Anderson & Patrick O’Farrell, 2022. "Relational Values of Cultural Ecosystem Services in an Urban Conservation Area: The Case of Table Mountain National Park, South Africa," Land, MDPI, vol. 11(5), pages 1-28, April.
    19. Vahid Amini Parsa & Esmail Salehi & Ahmad Reza Yavari & Peter M van Bodegom, 2019. "An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    20. Kosoy, Nicolás & Corbera, Esteve, 2010. "Payments for ecosystem services as commodity fetishism," Ecological Economics, Elsevier, vol. 69(6), pages 1228-1236, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:274-:d:1579015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.