IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p247-d1576524.html
   My bibliography  Save this article

Physical Parameterization Sensitivity of Noah-MP for Hydrothermal Simulation Within the Active Layer on the Qinghai–Tibet Plateau

Author

Listed:
  • Yongliang Jiao

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Ren Li

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Tonghua Wu

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Xiaodong Wu

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Shenning Wang

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jimin Yao

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Guojie Hu

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Xiaofan Zhu

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Jianzong Shi

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Yao Xiao

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Erji Du

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yongping Qiao

    (Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

Abstract

The accurate modeling of complex freeze–thaw processes and hydrothermal dynamics within the active layer is challenging. Due to the uncertainty in hydrothermal simulation, it is necessary to thoroughly investigate the parameterization schemes in land surface models. The Noah-MP was utilized in this study to conduct 23,040 ensemble experiments based on 11 physical processes, which were aimed at improving the understanding of parameterization schemes and reducing model uncertainty. Next, the impacts of uncertainty of physical processes on land surface modeling were evaluated via Natural Selection and Tukey’s test. Finally, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was used to identify the optimal combination of parameterization schemes for improving hydrothermal simulation. The results of Tukey’s test agreed well with those of Natural Selection for most soil layers. More importantly, Tukey’s test identified more parameterization schemes with consistent model performance for both soil temperature and moisture. Results from TOPSIS showed that the determination of optimal schemes was consistent for the simulation of soil temperature and moisture in each physical process except for frozen soil permeability (INF). Further analysis showed that scheme 2 of INF yielded better simulation results than scheme 1. The improvement of the optimal scheme combination during the frozen period was more significant than that during the thawed period.

Suggested Citation

  • Yongliang Jiao & Ren Li & Tonghua Wu & Xiaodong Wu & Shenning Wang & Jimin Yao & Guojie Hu & Xiaofan Zhu & Jianzong Shi & Yao Xiao & Erji Du & Yongping Qiao, 2025. "Physical Parameterization Sensitivity of Noah-MP for Hydrothermal Simulation Within the Active Layer on the Qinghai–Tibet Plateau," Land, MDPI, vol. 14(2), pages 1-24, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:247-:d:1576524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/247/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:247-:d:1576524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.