IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p245-d1576385.html
   My bibliography  Save this article

Dynamic Simulation and Reduction Path of Carbon Emission in “Three-Zone Space”: A Case Study of a Rapidly Urbanizing City

Author

Listed:
  • Ying Wang

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Yiqi Fan

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Haiyang Li

    (School of Public Policy and Management, Tsinghua University, Beijing 100084, China)

  • Zhiyu Shang

    (School of Public Administration, China University of Geosciences, Wuhan 430074, China)

Abstract

Understanding the current and future net carbon emission trajectories in “Three-Zone Space” is crucial for China to promote the formation of a low-carbon development pattern in territorial space and realize carbon neutrality. Taking Wuhan as the study area, we developed carbon emission and sequestration inventories for “Three-Zone Space”. Key driving factors of net carbon emissions were analyzed using the logarithmic mean division index, and future emissions and sequestration under six scenarios were projected with a system dynamics model. The optimal emission reduction pathway was identified through the intelligent decision-making index analysis. Our results show that Wuhan’s net carbon emission increased from 18.589 Mt in 2000 to 42.794 Mt in 2020. The emissions during this period primarily came from urban production space and urban living space. Economic development is the primary factor contributing to the increase in net carbon emissions (36.412 Mt). The efficiency of territorial space utilization is the strongest mitigator of net carbon emissions, reducing net carbon emissions by 74.341 Mt (accounting for 42.06% of total emissions). The comprehensive scenario is the most effective for net carbon emission reduction in urban and ecological spaces, while the technological progress scenario provides the greatest reduction potential in agricultural spaces. These findings provide actionable insights for optimizing spatial planning, enhancing ecological restoration, and adopting low-carbon agricultural technologies to achieve targeted emissions reductions in “Three-Zone Space”. The results of this study can further provide scientific basis for the formulation of targeted emission reduction measures for “Three-Zone Space” and guide the construction of low-carbon territorial space patterns.

Suggested Citation

  • Ying Wang & Yiqi Fan & Haiyang Li & Zhiyu Shang, 2025. "Dynamic Simulation and Reduction Path of Carbon Emission in “Three-Zone Space”: A Case Study of a Rapidly Urbanizing City," Land, MDPI, vol. 14(2), pages 1-28, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:245-:d:1576385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Du, Kerui & Cheng, Yuanyuan & Yao, Xin, 2021. "Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities," Energy Economics, Elsevier, vol. 98(C).
    3. John Barrett & Glen Peters & Thomas Wiedmann & Kate Scott & Manfred Lenzen & Katy Roelich & Corinne Le Qu�r�, 2013. "Consumption-based GHG emission accounting: a UK case study," Climate Policy, Taylor & Francis Journals, vol. 13(4), pages 451-470, July.
    4. Jin, Gui & Guo, Baishu & Deng, Xiangzheng, 2020. "Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China?," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    6. Dirk-Jan van de Ven & Shivika Mittal & Ajay Gambhir & Robin D. Lamboll & Haris Doukas & Sara Giarola & Adam Hawkes & Konstantinos Koasidis & Alexandre C. Köberle & Haewon McJeon & Sigit Perdana & Glen, 2023. "A multimodel analysis of post-Glasgow climate targets and feasibility challenges," Nature Climate Change, Nature, vol. 13(6), pages 570-578, June.
    7. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    8. Chen, Weiming & Lei, Yalin & Feng, Kuishuang & Wu, Sanmang & Li, Li, 2019. "Provincial emission accounting for CO2 mitigation in China: Insights from production, consumption and income perspectives," Applied Energy, Elsevier, vol. 255(C).
    9. Silvia Pianta & Elina Brutschin, 2023. "Increased ambition is needed after Glasgow," Nature Climate Change, Nature, vol. 13(6), pages 505-506, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    2. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    3. Chen, Guangwu & Wiedmann, Thomas & Wang, Yafei & Hadjikakou, Michalis, 2016. "Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1082-1092.
    4. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    5. Yue, Wencong & Li, Yangqing & Su, Meirong & Chen, Qionghong & Rong, Qiangqiang, 2023. "Carbon emissions accounting and prediction in urban agglomerations from multiple perspectives of production, consumption and income," Applied Energy, Elsevier, vol. 348(C).
    6. Xu, Ru-Yu & Wang, Ke-Liang & Miao, Zhuang, 2024. "The impact of digital technology innovation on green total-factor energy efficiency in China: Does economic development matter?," Energy Policy, Elsevier, vol. 194(C).
    7. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    8. Shuyang Chen, 2021. "The Urbanisation Impacts on the Policy Effects of the Carbon Tax in China," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    9. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    10. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    11. Chuan Tian & Guohui Feng & Huanyu Li, 2023. "Empirical Study on the Impact of Urbanization and Carbon Emissions under the Dual-Carbon Framework Based on Coupling and Coordination," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    12. Lin, Fan & Xie, Danyang, 2024. "The Role of R&D for Climate Change Mitigation in China: a Dynamic General Equilibrium Analysis," MPRA Paper 123556, University Library of Munich, Germany.
    13. Meng Guo & Shukai Cai, 2022. "Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    14. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    15. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    16. Xueyang Wang & Xiumei Sun & Haotian Zhang & Chaokai Xue, 2022. "Digital Economy Development and Urban Green Innovation CA-Pability: Based on Panel Data of 274 Prefecture-Level Cities in China," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    17. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    18. Xing Zhao & Yifan Guo & Zhen Liu & Anteng Xiu, 2023. "Boosting green recovery: the impact of green fiscal policy on green total factor productivity," Economic Change and Restructuring, Springer, vol. 56(4), pages 2601-2619, August.
    19. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    20. Yanli Ji & Jie Xue & Kaiyang Zhong, 2022. "Does Environmental Regulation Promote Industrial Green Technology Progress? Empirical Evidence from China with a Heterogeneity Analysis," IJERPH, MDPI, vol. 19(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:245-:d:1576385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.