IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p88-d1560394.html
   My bibliography  Save this article

Risk Assessment of Non-Point Source Pollution Based on the Minimum Cumulative Resistance Model: A Case Study of Shenyang, China

Author

Listed:
  • Yongxin Wang

    (College of Geography and Environment, Shandong Normal University, Jinan 250300, China
    CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Jianmin Qiao

    (College of Geography and Environment, Shandong Normal University, Jinan 250300, China)

  • Yuanman Hu

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    E’erguna Wetland Ecosystem Research Station, Hulunbuir 022250, China)

  • Qian Zhang

    (College of Geography and Environment, Shandong Normal University, Jinan 250300, China
    CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Xiulin Han

    (College of Geography and Environment, Shandong Normal University, Jinan 250300, China
    CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Chunlin Li

    (CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    E’erguna Wetland Ecosystem Research Station, Hulunbuir 022250, China)

Abstract

Urban non-point source (NPS) pollution is an important risk factor that leads to the deterioration of urban water quality, affects human health, and destroys the ecological balance of the water environment. Reasonable risk prevention and control of urban NPS pollution are conducive to reducing the cost of pollution management. Therefore, based on the theory of “source–sink” in landscape ecology, combined with the minimum cumulative resistance (MCR) model, this study considered the influence of geographic-environment factors in Shenyang’s built-up area on pollutants in the process of entering the water body under the action of surface runoff, and evaluated its risk. The results indicated that the highest pollution loads are generated by road surfaces. High-density residential zones and industrial zones are the main sources of urban NPS pollution. Impervious surface ratios and patch density were the dominant environmental factors affecting pollutant transport, with contributions of 56% and 40%, respectively. The minimum cumulative resistance to urban NPS pollution transport is significantly and positively correlated with the distance from water bodies and roads. Higher risk areas are mainly concentrated in the center of built-up areas and roads near the Hun River. Green spaces, business zones, public service zones, development zones, and educational zones demonstrate the highest average risk index values, exceeding 29. In contrast, preservation zones showed the lowest risk index (7.3). Compared with the traditional risk index method, the method proposed in this study could accurately estimate the risk of urban NPS pollution and provide a new reference for risk assessments of urban NPS pollution.

Suggested Citation

  • Yongxin Wang & Jianmin Qiao & Yuanman Hu & Qian Zhang & Xiulin Han & Chunlin Li, 2025. "Risk Assessment of Non-Point Source Pollution Based on the Minimum Cumulative Resistance Model: A Case Study of Shenyang, China," Land, MDPI, vol. 14(1), pages 1-19, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:88-:d:1560394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/88/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/88/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Villamizar, Martha L. & Brown, Colin D., 2016. "Modelling triazines in the valley of the River Cauca, Colombia, using the annualized agricultural non-point source pollution model," Agricultural Water Management, Elsevier, vol. 177(C), pages 24-36.
    2. J.B. Ellis, 2013. "Sustainable surface water management and green infrastructure in UK urban catchment planning," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 24-41, January.
    3. Mohsen Tahmasebi Nasab & Kendall Grimm & Mohammad Hadi Bazrkar & Lan Zeng & Afshin Shabani & Xiaodong Zhang & Xuefeng Chu, 2018. "SWAT Modeling of Non-Point Source Pollution in Depression-Dominated Basins under Varying Hydroclimatic Conditions," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    2. Pappalardo, Viviana & La Rosa, Daniele & Campisano, Alberto & La Greca, Paolo, 2017. "The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study," Ecosystem Services, Elsevier, vol. 26(PB), pages 345-354.
    3. Alessio Russo & Wing Tung Chan & Giuseppe T. Cirella, 2021. "Estimating Air Pollution Removal and Monetary Value for Urban Green Infrastructure Strategies Using Web-Based Applications," Land, MDPI, vol. 10(8), pages 1-17, July.
    4. Xiaoping Li & Yan Yan & Liuyang Yao, 2020. "‘Get a Fish’ vs. ‘Get a Fishing Skill’: Farmers’ Preferred Compensation Methods to Control Agricultural Nonpoint Source Pollution," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    5. Katarzyna Rędzińska & Monika Piotrkowska, 2020. "Urban Planning and Design for Building Neighborhood Resilience to Climate Change," Land, MDPI, vol. 9(10), pages 1-19, October.
    6. Pietro Piana & Francesco Faccini & Fabio Luino & Guido Paliaga & Alessandro Sacchini & Charles Watkins, 2019. "Geomorphological Landscape Research and Flood Management in a Heavily Modified Tyrrhenian Catchment," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    7. Erica Honeck & Atte Moilanen & Benjamin Guinaudeau & Nicolas Wyler & Martin A. Schlaepfer & Pascal Martin & Arthur Sanguet & Loreto Urbina & Bertrand von Arx & Joëlle Massy & Claude Fischer & Anthony , 2020. "Implementing Green Infrastructure for the Spatial Planning of Peri-Urban Areas in Geneva, Switzerland," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    8. Liquete, Camino & Udias, Angel & Conte, Giulio & Grizzetti, Bruna & Masi, Fabio, 2016. "Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits," Ecosystem Services, Elsevier, vol. 22(PB), pages 392-401.
    9. Vidya Anderson & William A. Gough, 2022. "A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications," Land, MDPI, vol. 11(7), pages 1-22, July.
    10. Reynaud, Arnaud & Lanzanova, Denis & Liquete, Camino & Grizzetti, Bruna, 2017. "Going green? Ex-post valuation of a multipurpose water infrastructure in Northern Italy," Ecosystem Services, Elsevier, vol. 27(PA), pages 70-81.
    11. Sarah J. Tayouga & Sara A. Gagné, 2016. "The Socio-Ecological Factors that Influence the Adoption of Green Infrastructure," Sustainability, MDPI, vol. 8(12), pages 1-17, December.
    12. Vidya Anderson & William A. Gough, 2021. "Harnessing the Four Horsemen of Climate Change: A Framework for Deep Resilience, Decarbonization, and Planetary Health in Ontario, Canada," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    13. Se-Rin Park & Soon-Jin Hwang & Kyungjin An & Sang-Woo Lee, 2021. "Identifying Key Watershed Characteristics That Affect the Biological Integrity of Streams in the Han River Watershed, Korea," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    14. Wan, Wei & Han, Yiwen & Wu, Hanqing & Liu, Fan & Liu, Zhong, 2021. "Application of the source–sink landscape method in the evaluation of agricultural non-point source pollution: First estimation of an orchard-dominated area in China," Agricultural Water Management, Elsevier, vol. 252(C).
    15. Vidya Anderson & William A. Gough & Branka Agic, 2021. "Nature-Based Equity: An Assessment of the Public Health Impacts of Green Infrastructure in Ontario Canada," IJERPH, MDPI, vol. 18(11), pages 1-17, May.
    16. Ying Chen & Binbin Lu & Chongyu Xu & Xingwei Chen & Meibing Liu & Lu Gao & Haijun Deng, 2022. "Uncertainty Evaluation of Best Management Practice Effectiveness Based on the AnnAGNPS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1307-1321, March.
    17. Shoukai Sun & Yuantong Jiang & Shuanning Zheng, 2020. "Research on Ecological Infrastructure from 1990 to 2018: A Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    18. Jie Zhang & Meiqiu Chen & Chang Huang & Zhaohao Lai, 2022. "Labor Endowment, Cultivated Land Fragmentation, and Ecological Farming Adoption Strategies among Farmers in Jiangxi Province, China," Land, MDPI, vol. 11(5), pages 1-17, May.
    19. Carlos Andrés Peña-Guzmán & Lina Soto & Angie Diaz, 2019. "A Proposal for Redesigning the Water Quality Network of the Tunjuelo River in Bogotá, Colombia through a Spatio-Temporal Analysis," Resources, MDPI, vol. 8(2), pages 1-14, April.
    20. Mintz, Mordekhay & Portnov, Boris A., 2023. "Social and environmental factors affecting the amount of property taxes collected by local authorities in Israel," Land Use Policy, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:88-:d:1560394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.