IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p84-d1559880.html
   My bibliography  Save this article

Habitat Quality Dynamics in Urumqi over the Last Two Decades: Evidence of Land Use and Land Cover Changes

Author

Listed:
  • Siying Chen

    (College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China)

  • Ümüt Halik

    (College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China)

  • Lei Shi

    (School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250101, China)

  • Wentao Fu

    (College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
    Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830046, China)

  • Lu Gan

    (Postdoctoral Research Station of Theoretical Economics, School of Economics and Management, Xinjiang University, Urumqi 830046, China)

  • Martin Welp

    (Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany)

Abstract

The integrity of habitat quality is a pivotal cornerstone for the sustainable advancement of local ecological systems. Rapid urbanization has led to habitat degradation and loss of biodiversity, posing severe threats to regional sustainability, particularly in extremely vulnerable arid zones. However, systematic research on the assessment indicators, limiting factors, and driving mechanisms of habitat quality in arid regions is notably lacking. This study takes Urumqi, an oasis city in China’s arid region, as a case study and employs the InVEST and PLUS models to conduct a dynamic evaluation of habitat quality in Urumqi from 2000 to 2022 against the backdrop of land use changes. It also simulates habitat quality under different scenarios for the year 2035, exploring the temporal and spatial dynamics of habitat quality and its driving mechanisms. The results indicate a decline in habitat quality. The habitat quality in the southern mountainous areas is significantly superior to that surrounding the northern Gurbantunggut Desert, and it exhibits greater stability. The simulation and prediction results suggest that from 2020 to 2035, habitat degradation will be mitigated under Ecological Protection scenarios, while the decline in habitat quality will be most pronounced under Business-As-Usual scenarios. The spatial distribution of habitat quality changes in Urumqi exhibits significant autocorrelation and clustering, with these patterns intensifying over time. The observed decline in habitat quality in Urumqi is primarily driven by anthropogenic activities, urban expansion, and climate change. These factors have collectively contributed to significant alterations in the landscape, leading to the degradation of ecological conditions. To mitigate further habitat quality loss and support sustainable development, it is essential to implement rigorous ecological protection policies, adopt effective ecological risk management strategies, and promote the expansion of ecological land use. These actions are crucial for stabilizing and improving regional habitat quality in the long term.

Suggested Citation

  • Siying Chen & Ümüt Halik & Lei Shi & Wentao Fu & Lu Gan & Martin Welp, 2025. "Habitat Quality Dynamics in Urumqi over the Last Two Decades: Evidence of Land Use and Land Cover Changes," Land, MDPI, vol. 14(1), pages 1-22, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:84-:d:1559880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/84/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/84/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xuehong & Zhang, Xuebin & Feng, Haoyuan & Li, Yixia & Yu, Jiale & Liu, Yanni & Du, Hucheng, 2024. "Dynamic evolution and simulation of habitat quality in arid regions: A case study of the Hexi region, China," Ecological Modelling, Elsevier, vol. 493(C).
    2. Yongyu Zhao & Alimujiang Kasimu & Hongwu Liang & Rukeya Reheman, 2022. "Construction and Restoration of Landscape Ecological Network in Urumqi City Based on Landscape Ecological Risk Assessment," Sustainability, MDPI, vol. 14(13), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiqing Han & Zhihua Su & Guangbin Yang, 2023. "Variations of Habitat Quality and Ecological Risk and Their Correlations with Landscape Metrics in a Robust Human Disturbed Coastal Region—Case Study: Xinggang Town in Southern China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    2. Lina Tang & Alimujiang Kasimu & Haitao Ma & Mamattursun Eziz, 2023. "Monitoring Multi-Scale Ecological Change and Its Potential Drivers in the Economic Zone of the Tianshan Mountains’ Northern Slopes, Xinjiang, China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    3. Jia Xu & Dawei Xu & Chen Qu, 2022. "Construction of Ecological Security Pattern and Identification of Ecological Restoration Zones in the City of Changchun, China," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    4. Xueling Zhang & Alimujiang Kasimu & Hongwu Liang & Bohao Wei & Yimuranzi Aizizi, 2022. "Spatial and Temporal Variation of Land Surface Temperature and Its Spatially Heterogeneous Response in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains, Northwest China," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
    5. Haoran Fan & Qi Si & Wenming Dong & Gang Lu & Xinping Liu, 2023. "Land Use Change and Landscape Ecological Risk Prediction in Urumqi under the Shared Socio-Economic Pathways and the Representative Concentration Pathways (SSP-RCP) Scenarios," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    6. Shaobo Liu & Yiting Xia & Yifeng Ji & Wenbo Lai & Jiang Li & Yicheng Yin & Jialing Qi & Yating Chang & Hao Sun, 2023. "Balancing Urban Expansion and Ecological Connectivity through Ecological Network Optimization—A Case Study of ChangSha County," Land, MDPI, vol. 12(7), pages 1-21, July.
    7. Fengyu Wang & Shuai Tong & Yun Chu & Tianlong Liu & Xiang Ji, 2023. "Spatio-Temporal Evolution of Key Areas of Territorial Ecological Restoration in Resource-Exhausted Cities: A Case Study of Jiawang District, China," Land, MDPI, vol. 12(9), pages 1-25, September.
    8. Yongyu Zhao & Alimujiang Kasimu & Pengwen Gao & Hongwu Liang, 2022. "Spatiotemporal Changes in The Urban Landscape Pattern and Driving Forces of LUCC Characteristics in The Urban Agglomeration on The Northern Slope of The Tianshan Mountains from 1995 to 2018," Land, MDPI, vol. 11(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:84-:d:1559880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.