IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i1p160-d1566672.html
   My bibliography  Save this article

How Do Changes in Grassland Phenology and Its Responses to Extreme Climatic Events in Central Asia?

Author

Listed:
  • Xinwei Wang

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Jianhao Li

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Jianghua Zheng

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Liang Liu

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Xiaojing Yu

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Ruikang Tian

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

  • Mengxiang Xing

    (College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
    Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China)

Abstract

Extreme climate events have become more frequent under global warming, significantly affecting vegetation phenology and carbon cycles in Central Asia. However, the mediating effects of intensity of compound drought and heat events (CDHEs) and compound moisture and heat events (CMHEs) on grassland phenology and their trends in the relative contributions to grassland phenology over time have remained unclear. Based on the calculation results of grassland phenology and compound events (CEs), this study used trend analysis, partial least squares regression structural equation modeling (PLS-SEM), and ridge regression analysis to investigate the mediating effect and the temporal trend in relative contribution of CEs to grassland phenology in Central Asia, and the magnitude of sensitivity of grassland phenology to CEs. This study revealed that the start of season (SOS) was advanced by 0.4 d·a −1 , end of season (EOS) was delayed by 0.5 d·a −1 , and length of season (LOS) extended by 0.8 d·a −1 in 1982–2022. The duration of the CDHEs (0−37 days) was greater than that of the CMHEs (0−9 days) in Central Asia. The direct effects of CDHEs and CMHEs on grassland phenology were generally negative, except for the direct positive effect of CDHEs on LOS. The indirect effects of temperature and precipitation on grassland phenology through CDHEs and CMHEs were greater than their direct effects on phenology. The relative contribution of CDHEs to grassland phenology was consistently greater than that of CMHEs, and both the relative contribution curves showed a significant upward trend. The sensitivity of grassland phenology to CDHEs was higher than its sensitivity to CMHEs at 0.79 (SOS), 1.18 (EOS), and 0.72 (LOS). Our results emphasize the mediating effects of CDHEs and CMHEs on grassland phenology. Under the influence of CDHEs and CMHEs, the LOS will further lengthen in the future.

Suggested Citation

  • Xinwei Wang & Jianhao Li & Jianghua Zheng & Liang Liu & Xiaojing Yu & Ruikang Tian & Mengxiang Xing, 2025. "How Do Changes in Grassland Phenology and Its Responses to Extreme Climatic Events in Central Asia?," Land, MDPI, vol. 14(1), pages 1-18, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:160-:d:1566672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/1/160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/1/160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Melissa Reyes-Fox & Heidi Steltzer & M. J. Trlica & Gregory S. McMaster & Allan A. Andales & Dan R. LeCain & Jack A. Morgan, 2014. "Elevated CO2 further lengthens growing season under warming conditions," Nature, Nature, vol. 510(7504), pages 259-262, June.
    2. Jennifer K. Balch & John T. Abatzoglou & Maxwell B. Joseph & Michael J. Koontz & Adam L. Mahood & Joseph McGlinchy & Megan E. Cattau & A. Park Williams, 2022. "Warming weakens the night-time barrier to global fire," Nature, Nature, vol. 602(7897), pages 442-448, February.
    3. Chaoyang Wu & Jie Peng & Philippe Ciais & Josep Peñuelas & Huanjiong Wang & Santiago Beguería & T. Andrew Black & Rachhpal S. Jassal & Xiaoyang Zhang & Wenping Yuan & Eryuan Liang & Xiaoyue Wang & Hao, 2022. "Increased drought effects on the phenology of autumn leaf senescence," Nature Climate Change, Nature, vol. 12(10), pages 943-949, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoshuai Wei & Mingze Xu & Hongxian Zhao & Xinyue Liu & Zifan Guo & Xinhao Li & Tianshan Zha, 2024. "Exploring Sensitivity of Phenology to Seasonal Climate Differences in Temperate Grasslands of China Based on Normalized Difference Vegetation Index," Land, MDPI, vol. 13(3), pages 1-19, March.
    2. Justin Derner & David Briske & Matt Reeves & Tami Brown-Brandl & Miranda Meehan & Dana Blumenthal & William Travis & David Augustine & Hailey Wilmer & Derek Scasta & John Hendrickson & Jerry Volesky &, 2018. "Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late-twenty-first century climate," Climatic Change, Springer, vol. 146(1), pages 19-32, January.
    3. Xinyi Zhang & Xiaoyue Wang & Constantin M. Zohner & Josep Peñuelas & Yang Li & Xiuchen Wu & Yao Zhang & Huiying Liu & Pengju Shen & Xiaoxu Jia & Wenbin Liu & Dashuan Tian & Prajal Pradhan & Adandé Bel, 2025. "Declining precipitation frequency may drive earlier leaf senescence by intensifying drought stress and enhancing drought acclimation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Jiayan Kong & Yinghe An & Xian Shi & Zhongyi Sun & Lan Wu & Wei Cui, 2023. "Meteorological-Data-Driven Rubber Tree Powdery Mildew Model and Its Application on Spatiotemporal Patterns: A Case Study of Hainan Island," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    5. Wantong Li & Javier Pacheco-Labrador & Mirco Migliavacca & Diego Miralles & Anne Hoek van Dijke & Markus Reichstein & Matthias Forkel & Weijie Zhang & Christian Frankenberg & Annu Panwar & Qian Zhang , 2023. "Widespread and complex drought effects on vegetation physiology inferred from space," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:1:p:160-:d:1566672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.