IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1404-d1468519.html
   My bibliography  Save this article

Quantifying the Cumulative Effects of Large-Scale Reclamation on Coastal Wetland Degradation

Author

Listed:
  • Linlin Cui

    (College of Science, Shihezi University, Shihezi 832000, China
    Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Guosheng Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Miao Zhao

    (College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China)

  • Zhihui Zhang

    (College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China)

Abstract

Considering the importance of coastal wetlands as key land resources and the ecological degradation caused by large-scale and multi-stage reclamation, as well as the significant synergistic and superimposed effects of reclamation on wetland degradation in temporal and spatial dimensions, it is vital to conduct in-depth research on the impact mechanisms and cumulative effects of reclamation on wetland degradation. However, the existing methods for evaluating these cumulative effects still have some shortcomings in characterizing the spatiotemporal scale. Consequently, it is urgent to introduce or develop a cumulative effect evaluation method based on remote sensing. Taking the Jiangsu coastal wetland as a typical case study area, the present study constructed a cumulative effect evaluation method based on calculus theory combined with landscape succession modeling and statistical analysis. This method was then used to quantitatively analyze the impacts and cumulative effects of reclamation on wetland degradation in the Jiangsu coastal region from 1980 to 2024. The results show that degradation of the Jiangsu coastal wetlands over the last 45 years covered 2931.54 km 2 , accounting for 46.92% of the area in 1980. This degradation primarily reflects a shift from natural wetland to constructed wetland. In addition, the reclaimed area of 2119.61 km 2 is mainly used for aquaculture and agricultural cultivation. The reclamation rate of Jiangsu showed insignificant fluctuations and significant spatial differences. The reclamation rate of the north counties and cities presented a downward trend, while that of the south counties and cities presented an upward trend. Reclamation has a significant impact on wetland degradation, with a contribution rate of 50.62%. The cumulative effect in the study area reached its maximum value in 2015, except for Nantong City. This study provides a new perspective for quantitatively analyzing the impacts and cumulative effects of coastal wetland reclamation and provides guidance for the effective management and sustainable utilization of coastal wetland resources.

Suggested Citation

  • Linlin Cui & Guosheng Li & Miao Zhao & Zhihui Zhang, 2024. "Quantifying the Cumulative Effects of Large-Scale Reclamation on Coastal Wetland Degradation," Land, MDPI, vol. 13(9), pages 1-18, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1404-:d:1468519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1404/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1404/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas J. Murray & Stuart R. Phinn & Michael DeWitt & Renata Ferrari & Renee Johnston & Mitchell B. Lyons & Nicholas Clinton & David Thau & Richard A. Fuller, 2019. "The global distribution and trajectory of tidal flats," Nature, Nature, vol. 565(7738), pages 222-225, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    2. Chao Xu & Weibo Liu, 2021. "The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020," Geographies, MDPI, vol. 1(3), pages 1-23, November.
    3. Xiao, Hui & Chadès, Iadine & Hill, Narelle & Murray, Nicholas & Fuller, Richard A. & McDonald-Madden, Eve, 2021. "Conserving migratory species while safeguarding ecosystem services," Ecological Modelling, Elsevier, vol. 442(C).
    4. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    6. Su, Jie & Gasparatos, Alexandros, 2024. "Assessing the heterogeneity of public acceptability for mangrove restoration through a choice experiment," Ecological Economics, Elsevier, vol. 218(C).
    7. Justin P. Suraci & Tina G. Mozelewski & Caitlin E. Littlefield & Theresa Nogeire McRae & Ann Sorensen & Brett G. Dickson, 2023. "Management of U.S. Agricultural Lands Differentially Affects Avian Habitat Connectivity," Land, MDPI, vol. 12(4), pages 1-20, March.
    8. Shisi Tang & Laixi Song & Shiqi Wan & Yafei Wang & Yazhen Jiang & Jinfeng Liao, 2022. "Long-Time-Series Evolution and Ecological Effects of Coastline Length in Coastal Zone: A Case Study of the Circum-Bohai Coastal Zone, China," Land, MDPI, vol. 11(8), pages 1-19, August.
    9. Kendall Valentine & Ellen R. Herbert & David C. Walters & Yaping Chen & Alexander J. Smith & Matthew L. Kirwan, 2023. "Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Minjing Wang & Yanyan Kang & Zhuyou Sun & Jun Lei & Xiuqiang Peng, 2022. "Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    11. Chao Zhang & Shuai Zhong & Xue Wang & Lei Shen & Litao Liu & Yujie Liu, 2019. "Land Use Change in Coastal Cities during the Rapid Urbanization Period from 1990 to 2016: A Case Study in Ningbo City, China," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    12. Peijun Wang & Qi Liu & Shenglong Fan & Jing Wang & Shouguo Mu & Chunbo Zhu, 2023. "Combined Application of Desulfurization Gypsum and Biochar for Improving Saline-Alkali Soils: A Strategy to Improve Newly Reclaimed Cropland in Coastal Mudflats," Land, MDPI, vol. 12(9), pages 1-22, September.
    13. Yifei Zhao & Qing Liu & Runqiu Huang & Haichen Pan & Min Xu, 2020. "Recent Evolution of Coastal Tidal Flats and the Impacts of Intensified Human Activities in the Modern Radial Sand Ridges, East China," IJERPH, MDPI, vol. 17(9), pages 1-20, May.
    14. Yuan Xu & Christopher R. Esposito & Maricel Beltrán-Burgos & Heidi M. Nepf, 2022. "Competing effects of vegetation density on sedimentation in deltaic marshes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Gregory S. Fivash & Stijn Temmerman & Maarten G. Kleinhans & Maike Heuner & Tjisse Heide & Tjeerd J. Bouma, 2023. "Early indicators of tidal ecosystem shifts in estuaries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Mengzhi Ji & Jiayin Zhou & Yan Li & Kai Ma & Wen Song & Yueyue Li & Jizhong Zhou & Qichao Tu, 2024. "Biodiversity of mudflat intertidal viromes along the Chinese coasts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Vincent T. M. Zelst & Jasper T. Dijkstra & Bregje K. Wesenbeeck & Dirk Eilander & Edward P. Morris & Hessel C. Winsemius & Philip J. Ward & Mindert B. Vries, 2021. "Cutting the costs of coastal protection by integrating vegetation in flood defences," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Qian Dong & Qingqing Zhang & Anbang Liao & Chi Xu & Maosong Liu, 2022. "Plant Adaptability and Vegetation Differentiation in the Coastal Beaches of Yellow–Bohai Sea in China," IJERPH, MDPI, vol. 19(4), pages 1-24, February.
    19. Pingyang Han & Haozhi Hu & Mengting Jiang & Min Wang, 2024. "Construction of Wetland Ecological Security Pattern in Wuhan Metropolitan Core Area Considering Wetland Ecological Risk," Land, MDPI, vol. 13(9), pages 1-26, September.
    20. Xing Li & Xin Zhang & Chuanyin Qiu & Yuanqiang Duan & Shu’an Liu & Dan Chen & Lianpeng Zhang & Changming Zhu, 2020. "Rapid Loss of Tidal Flats in the Yangtze River Delta since 1974," IJERPH, MDPI, vol. 17(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1404-:d:1468519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.