IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i9p3191-d353986.html
   My bibliography  Save this article

Recent Evolution of Coastal Tidal Flats and the Impacts of Intensified Human Activities in the Modern Radial Sand Ridges, East China

Author

Listed:
  • Yifei Zhao

    (School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Qing Liu

    (School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Runqiu Huang

    (School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Haichen Pan

    (School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China)

  • Min Xu

    (School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China)

Abstract

The coastal tidal flats of the modern Radial Sand Ridges (RSRs) are typical silt-muddy tidal flats in Central Jiangsu Province. These tidal flats play a critical role in coastline protection and biodiversity conservation, and against storm surges, but have recently been displaying drastic changes in geomorphic dynamics because of human activities. However, a comprehensive understanding of spatiotemporal changes in tidal flats in RSRs remains lacking. Hence, we employed a novel remote sensing method by obtaining the instantaneous high/low tide line positions from over 112 scenes of Landsat satellite images of the study area from 1975 to 2017, which were used to track the recent evolution of the coastal tidal flats in the modern RSRs over the past four decades. We found that the shoreline of the tidal flats showed an advanced seaward trend, and the waterline of the tidal flat presented a gradual process during different periods. The total tidal flat area in the study area showed an obviously decreasing trend overall, and approximately 992 km 2 of the tidal flat was lost. We also found that the coastal tidal flats in the modern RSRs were generally undergoing erosion in the low tidal flats, especially in the Northern Swing and Southern Swing areas, while the high tidal flats showed a slowed accretionary change. Land reclamation was the main factor affecting the reduction in the tidal flat area, as the reclamation area has increased by 1300 km 2 , with an average of 35.14 km 2 /year. In addition, the erosion of the tidal flats was associated with a reduced sediment supply. Our findings will provide useful information for local managers and researchers to support future environmental management because increasing demand for land and rising sea levels are expected in the future.

Suggested Citation

  • Yifei Zhao & Qing Liu & Runqiu Huang & Haichen Pan & Min Xu, 2020. "Recent Evolution of Coastal Tidal Flats and the Impacts of Intensified Human Activities in the Modern Radial Sand Ridges, East China," IJERPH, MDPI, vol. 17(9), pages 1-20, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3191-:d:353986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/9/3191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/9/3191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthew L. Kirwan & J. Patrick Megonigal, 2013. "Tidal wetland stability in the face of human impacts and sea-level rise," Nature, Nature, vol. 504(7478), pages 53-60, December.
    2. Nicholas J. Murray & Stuart R. Phinn & Michael DeWitt & Renata Ferrari & Renee Johnston & Mitchell B. Lyons & Nicholas Clinton & David Thau & Richard A. Fuller, 2019. "The global distribution and trajectory of tidal flats," Nature, Nature, vol. 565(7738), pages 222-225, January.
    3. Jantsje Loon-Steensma, 2015. "Salt marshes to adapt the flood defences along the Dutch Wadden Sea coast," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 929-948, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binglin Liu & Haotian Wu & Zhenke Zhang & Guoen Wei & Yue Wang & Jie Zheng & Xuepeng Ji & Shengnan Jiang, 2021. "Recent Evolution of the Intertidal Sand Ridge Lines of the Dongsha Shoal in the Modern Radial Sand Ridges, East China," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    2. Jingnan Li & Haiyang Zhang & Li Zheng, 2023. "Influence of Organic Amendments Based on Garden Waste for Microbial Community Growth in Coastal Saline Soil," Sustainability, MDPI, vol. 15(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanhui Chen & Guosheng Li & Linlin Cui & Lijuan Li & Lei He & Peipei Ma, 2022. "The Effects of Tidal Flat Reclamation on the Stability of the Coastal Area in the Jiangsu Province, China, from the Perspective of Landscape Structure," Land, MDPI, vol. 11(3), pages 1-20, March.
    2. Minjing Wang & Yanyan Kang & Zhuyou Sun & Jun Lei & Xiuqiang Peng, 2022. "Monitoring Wetland Landscape Evolution Using Landsat Time-Series Data: A Case Study of the Nantong Coast, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    3. Yuan Xu & Christopher R. Esposito & Maricel Beltrán-Burgos & Heidi M. Nepf, 2022. "Competing effects of vegetation density on sedimentation in deltaic marshes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Gregory S. Fivash & Stijn Temmerman & Maarten G. Kleinhans & Maike Heuner & Tjisse Heide & Tjeerd J. Bouma, 2023. "Early indicators of tidal ecosystem shifts in estuaries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Xing Li & Xin Zhang & Chuanyin Qiu & Yuanqiang Duan & Shu’an Liu & Dan Chen & Lianpeng Zhang & Changming Zhu, 2020. "Rapid Loss of Tidal Flats in the Yangtze River Delta since 1974," IJERPH, MDPI, vol. 17(5), pages 1-20, March.
    6. Changda Liu & Jie Li & Qiuhua Tang & Jiawei Qi & Xinghua Zhou, 2022. "Classifying the Nunivak Island Coastline Using the Random Forest Integration of the Sentinel-2 and ICESat-2 Data," Land, MDPI, vol. 11(2), pages 1-15, February.
    7. Chao Xu & Weibo Liu, 2021. "The Spatiotemporal Characteristics and Dynamic Changes of Tidal Flats in Florida from 1984 to 2020," Geographies, MDPI, vol. 1(3), pages 1-23, November.
    8. Ge, Zhen-Ming & Guo, Hai-Qiang & Zhao, Bin & Zhang, Chao & Peltola, Heli & Zhang, Li-Quan, 2016. "Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach," Ecological Modelling, Elsevier, vol. 321(C), pages 110-120.
    9. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    10. repec:ags:aaea22:335970 is not listed on IDEAS
    11. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Yuqing Zhao & Zenglin Han & Changren Zhang & Yuqiao Wang & Jingqiu Zhong & Mengfan Gao, 2024. "Coastal Cultural Ecosystem Services: A Bridge between the Natural Ecosystem and Social Ecosystem for Sustainable Development," Land, MDPI, vol. 13(9), pages 1-22, August.
    13. Xiao, Hui & Chadès, Iadine & Hill, Narelle & Murray, Nicholas & Fuller, Richard A. & McDonald-Madden, Eve, 2021. "Conserving migratory species while safeguarding ecosystem services," Ecological Modelling, Elsevier, vol. 442(C).
    14. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    16. Panpan Cui & Fangli Su & Fang Zhou, 2022. "Inundation Depth Shape Phenotypic Variability of Phragmites australis in Liaohe Estuary Wetland, Northeast China," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    17. Ariana E. Sutton-Grier & Rachel K. Gittman & Katie K. Arkema & Richard O. Bennett & Jeff Benoit & Seth Blitch & Kelly A. Burks-Copes & Allison Colden & Alyssa Dausman & Bryan M. DeAngelis & A. Randall, 2018. "Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts," Sustainability, MDPI, vol. 10(2), pages 1-11, February.
    18. Su, Jie & Gasparatos, Alexandros, 2024. "Assessing the heterogeneity of public acceptability for mangrove restoration through a choice experiment," Ecological Economics, Elsevier, vol. 218(C).
    19. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    20. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    21. Frans Klijn & Bruno Merz & Edmund Penning-Rowsell & Zbigniew Kundzewicz, 2015. "Preface: climate change proof flood risk management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 837-843, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3191-:d:353986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.