IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i9p1346-d1463283.html
   My bibliography  Save this article

Evolution and Mechanism Analysis of Terrestrial Ecosystems in China with Respect to Gross Primary Productivity

Author

Listed:
  • Hanshi Sun

    (State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, China
    Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
    College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Yongming Cheng

    (State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, China
    Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
    College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Qiang An

    (State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, China
    Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
    College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Liu Liu

    (State Key Laboratory of Efficient Utilization of Agricultural Water Resources, China Agricultural University, Beijing 100083, China
    Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China
    College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

Abstract

The gross primary productivity (GPP) of vegetation stores atmospheric carbon dioxide as organic compounds through photosynthesis. Its spatial heterogeneity is primarily influenced by the carbon uptake period (CUP) and maximum photosynthetic productivity (GPP max ). Grassland, cropland, and forest are crucial components of China’s terrestrial ecosystems and are strongly influenced by the seasonal climate. However, it remains unclear whether the evolutionary characteristics of GPP are attributable to physiology or phenology. In this study, terrestrial ecosystem models and remote sensing observations of multi-source GPP data were utilized to quantitatively analyze the spatio-temporal dynamics from 1982 to 2018. We found that GPP exhibited a significant upward trend in most areas of China’s terrestrial ecosystems over the past four decades. Over 60% of Chinese grassland and over 50% of its cropland and forest exhibited a positive growth trend. The average annual GPP growth rates were 0.23 to 3.16 g C m −2 year −1 for grassland, 0.40 to 7.32 g C m −2 year −1 for cropland, and 0.67 to 7.81 g C m −2 year −1 for forest. GPP max also indicated that the overall growth rate was above 1 g C m −2 year −1 in most regions of China. The spatial trend pattern of GPP max closely mirrored that of GPP, although local vegetation dynamics remain uncertain. The partial correlation analysis results indicated that GPP max controlled the interannual GPP changes in most of the terrestrial ecosystems in China. This is particularly evident in grassland, where more than 99% of the interannual variation in GPP is controlled by GPP max . In the context of rapid global change, our study provides an accurate assessment of the long-term dynamics of GPP and the factors that regulate interannual variability across China’s terrestrial ecosystems. This is helpful for estimating and predicting the carbon budget of China’s terrestrial ecosystems.

Suggested Citation

  • Hanshi Sun & Yongming Cheng & Qiang An & Liu Liu, 2024. "Evolution and Mechanism Analysis of Terrestrial Ecosystems in China with Respect to Gross Primary Productivity," Land, MDPI, vol. 13(9), pages 1-17, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1346-:d:1463283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/9/1346/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/9/1346/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Gampe & Jakob Zscheischler & Markus Reichstein & Michael O’Sullivan & William K. Smith & Stephen Sitch & Wolfgang Buermann, 2021. "Increasing impact of warm droughts on northern ecosystem productivity over recent decades," Nature Climate Change, Nature, vol. 11(9), pages 772-779, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qifei Zhang & Congjian Sun & Yaning Chen & Wei Chen & Yanyun Xiang & Jiao Li & Yuting Liu, 2022. "Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    2. Alan F. Hamlet & Nima Ehsani & Jennifer L. Tank & Zachariah Silver & Kyuhyun Byun & Ursula H. Mahl & Shannon L. Speir & Matt T. Trentman & Todd V. Royer, 2024. "Effects of climate and winter cover crops on nutrient loss in agricultural watersheds in the midwestern U.S," Climatic Change, Springer, vol. 177(1), pages 1-21, January.
    3. Daniel G. Gómez & Carlos G. Ochoa & Derek Godwin & Abigail A. Tomasek & María I. Zamora Re, 2022. "Soil Moisture and Water Transport through the Vadose Zone and into the Shallow Aquifer: Field Observations in Irrigated and Non-Irrigated Pasture Fields," Land, MDPI, vol. 11(11), pages 1-17, November.
    4. Qian Cheng & Honggang Xu & Shuaipeng Fei & Zongpeng Li & Zhen Chen, 2022. "Estimation of Maize LAI Using Ensemble Learning and UAV Multispectral Imagery under Different Water and Fertilizer Treatments," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    5. David L. Miller & Sebastian Wolf & Joshua B. Fisher & Benjamin F. Zaitchik & Jingfeng Xiao & Trevor F. Keenan, 2023. "Increased photosynthesis during spring drought in energy-limited ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.
    8. Yiping Wu & Xiaowei Yin & Guoyi Zhou & L. Adrian Bruijnzeel & Aiguo Dai & Fan Wang & Pierre Gentine & Guangchuang Zhang & Yanni Song & Decheng Zhou, 2024. "Rising rainfall intensity induces spatially divergent hydrological changes within a large river basin," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Wu, Bingfang & Fu, Zhijun & Fu, Bojie & Yan, Changzhen & Zeng, Hongwei & Zhao, Wenwu, 2024. "Dynamics of land cover changes and driving forces in China’s drylands since the 1970 s," Land Use Policy, Elsevier, vol. 140(C).
    10. Alina Mukhtar & Aamina Batool & Zulfiqar Ali & Sadia Qamar & Saba Riaz & Saad Sh. Sammen, 2024. "A New Hybrid Weighted Regional Drought Index to Improve Regional Drought Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5541-5558, November.
    11. Farman Ali & Bing-Zhao Li & Zulfiqar Ali, 2022. "A New Weighting Scheme for Diminishing the Effect of Extreme Values in Regional Drought Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4099-4114, September.
    12. Wantong Li & Mirco Migliavacca & Matthias Forkel & Jasper M. C. Denissen & Markus Reichstein & Hui Yang & Gregory Duveiller & Ulrich Weber & Rene Orth, 2022. "Widespread increasing vegetation sensitivity to soil moisture," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1346-:d:1463283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.